Journal für Reproduktionsmedizin und Endokrinologie
– Journal of Reproductive Medicine and Endocrinology –

Andrologie • Embryologie & Biologie • Endokrinologie • Ethik & Recht • Genetik
Gynäkologie • Kontrazeption • Psychosomatik • Reproduktionsmedizin • Urologie

D.I.R-Annual 2019
Blumenauer V, Czeromin U, Fehr D, Fiedler K, Gnoth C
Krüssel JS, Kupka MS, Ott A, Tandler-Schneider A
J. Reproduktionsmed. Endocrinol 2020; 17 (5), 196-239

www.kup.at/repromedizin
Online-Datenbank mit Autoren- und Stichwortsuche

Offizielles Organ: AGRBM, BRZ, DVR, DGA, DGGEF, DGRM, D·I·R, EFA, OEGRM, SRBM/DGE

Indexed in EMBASE/Excerpta Medica/Scopus
Krause & Pachernegg GmbH, Verlag für Medizin und Wirtschaft, A-3003 Gablitz
Contents

Preface
197 D·I·R Annual 2019 – The German IVF-Registry
 V. Blumenauer, U. Czeromin, D. Fehr, K. Fiedler, C. Gnoth, J.-S. Krüssel, M.S. Kupka, A. Ott, A. Tandler-Schneider

198 Responsible for this Edition

Tables
199 Number of Treatments in 2019
199 Type of plausible treatment 2015–2019
200 Number of Oocyte Retrievals (Freshcycles) 1982–2019
200 Summary of Statistics in Brief 2018
201 Quality of Documentation 2018/2019
202 Birth Rate per Treatment Level in Fresh and Cryo Treatment Cycles 2017 and 2018
203 D·I·R Statistics in Brief – Fresh Cycles 2019
204 D·I·R Statistics in Brief – Fresh Cycles 2018
205 D·I·R Statistics in Brief – Cryo Cycles 2019
206 D·I·R Statistics in Brief – Cryo Cycles 2018
207 Pregnancy Rate and Ongoing Pregnancy as a Function of Female Age 2018
208 Pregnancy Rate and Ongoing Pregnancy as a Function of Female Age 2018
209 Pregnancy Rate and Ongoing Pregnancy as a Function of Female Age 2014–2018
210 Pregnancy Rate and Ongoing Pregnancy as a Function of Female Age 2014–2018
211 Results IVF, ICSI (COHS) and IVF and ICSI in Natural Cycles 2018
212 Results of Thawing-Cycles, TESE, IVF and ICSI with Donor Semen 2018
213 Positive Pregnancy Outcomes 2018
213 Loss of Pregnancy 2018
213 Embryos per Transfer and Children per Birth 1997–2018
214 Culture According to the “German Middle Way” and Impact on Therapy Outcome – Fresh Cycles 2018
215 Culture According to the “German Middle Way” and Impact on Therapy Outcome – Thawing Cycles PNs 2018
216 Culture According to the “German Middle Way” and Impact on Therapy Outcome – Thawing Cycles Embryos 2018
217 Pregnancies Cumulative 2016–2019
218 Oocyte Maturity Depending on Stimulation Protocol 2019
218 Cycles and Implantation-Rates with Transfer of Day 5/6 Embryos after Cryopreservation either on Culture Day 1 or Day 5/6
219 Implantation Rates of D3- and D5-Embryos and Number of Embryos per Transfer
219 Evolution of Retrieved Oocytes (IVF or ICSI)
220 Clinical Pregnancies (CP)/Fresh Transfer as a Function of Embryo Quality 2019
220 Clinical Pregnancies (CP)/Frozen Transfer as a Function of Embryo Quality 2019
221 Children as a Function of Week of Gestation (WoG) and Birth Weight (BW) 2018
222 Children Born 1997–2018
223 Distribution of Indications 2019
224 Mean Age for Women and Men 1997–2019
224 Pregnancy-Rate per ET Subject to Preexisting Medical- and Lifestyle-Conditions
225 Clinical Pregnancy Rate as a Function of Stimulation 2019
226 Ovarian Hyperstimulation Syndrome (OHSS) as a Function of Stimulation Protocol and Age Cohort 2019
226 Complications as a Function of Ovum Pick-up (OPU) 2019
227 FertiPROTEKT Netzwerk e.V.

231 List of D·I·R Members

239 Sponsors
Once again it is our great pleasure to present the annual report of the data collected by the German IVF-Registry (D·I·R). The 2019 Registry looks back onto more than 30 years of diligent data collection, extraction, and evaluation.

Since 1996, the German IVF-Registry has been electronically collecting data for each initiated treatment cycle. Meanwhile, nearly 2.0 million ART cycles (ART: Assisted Reproduction Technology) since 1982 and nearly 320,000 children born since 1997 have been documented in the database. The prospective documentation as well as the cycle-by-cycle data collection are of particular value and make the German IVF-Registry unique world-wide.

This Yearbook 2019 is like the Yearbook 2018 a yearbook of change and of organizational efforts undertaken by all authors and contributors. After years of data control and reconciliation, administrative work and programming, the implementation of a new data system has been rolled out to the IVF-clinics. This is still a major change and required huge modifications within the existing, heterogeneous IT environments of those pioneering centers. We want to express our thanks to everyone contributing to this process: the software companies, the D·I·R data management group, the D·I·R office, and particularly the associates within those centers.

The 2019 yearbook is based on exploitable exports from 131 centers, for which a number of 110,786 plausible cycles was documented. A total of 62,990 women were treated in 2019, resulting in an average of 1.8 cycles per woman. We are happy to note that the pregnancy rate per transfer in fresh cycles was 31.6%, whereas the pregnancy rate per transfer in cryo cycles was 29.6%. In the previous year, 2018, the documented birth rate per embryo transfer was 23.5% in fresh cycles and 20.0% in cryo cycles, with a very good general pregnancy outcome documentation of 95.0%.

Remarkably, 71.8% of the pregnancies led to a birth. A birth rate of 22.3% per embryo transfer was achieved. For comparison, the probability for a 25 year old woman to become pregnant WITHOUT any medical assistance averages at 23%. For a 35 year old woman this probability decreases to 16%, according to the Bundesgesundheitsblatt [BGBl 2013; 56: 1633–41].

In the last years particular attention was placed on the known problems of multiple pregnancies within ART cycles. In 2018, the rate of twin births was 19.2% in fresh cycles and 12.7% in cryo cycles. This rate is still too high, but we can see a small decrease in multiple birth for the first time!

The data presented in this yearbook demonstrate the high quality of reproductive medicine in Germany, leading to impressive results even under the restrictive legislation: in accordance with the “Embryo Protection Act” of 1990, the elective single embryo transfer (eSET) is still unlawful in Germany. Egg donation is forbidden as well. Cryopreservation is allowed for usually 2-PN stage oocytes only. The regulation that only a maximum of three embryos may be transferred has certainly led to positive effects. Due to the increasing quality of stimulation, improvements in oocyte and embryo treatment, and changes in transfer technology, the average number of transferred embryos has decreased by more than 25% in fresh cycles since 1997. Nevertheless, on average 1.7 embryos after IVF and ICSI were transferred.

Good and diligent documentation is proof of a highly organized and efficient workflow. The prospective cycle-by-cycle data collection is another quality feature of the German IVF-Registry, a feature that sets the German IVF-Registry apart from any other registry in the world. The results of the comprehensive data collection in the German IVF-Registry and its reports have been cited in numerous scientific publications, nationally as well as internationally, lending support and impetus to scientific research.

Furthermore, the data have contributed to the continuous improvement of quality within the German centers for reproductive medicine. Physicians, biologists, and patients alike have benefited from the tedious work necessary to collect, export, and evaluate as well as publish the data. Therefore, we express our gratitude to all those involved.

Thank you and keep up the good work!
Deutsches IVF-Register e.V. (D·I·R)®
German IVF Registry

Members of the Board
Dr. med. U. Czeromin (Chairwoman)
Prof. Dr. med. J.-S. Krüssel
Dr. med. A. Tandler-Schneider

Curators
Dipl.-Biol. V. Blumenauer
Dr. med. K. Fiedler
Dr. med. D. Fehr
Prof. Dr. med. M. Kupka
Dr. med. A. Ott
Prof. Dr. med. C. Gnoth (co-opted member)

Past Chairmen
Dr. med. K. Bühler (2007–2014)
Prof. Dr. med. R. Felberbaum (1995–2007)
Prof. Dr. med. F. Lehmann (1982–1992)

FertiPROTEKT Netzwerk e.V.
Prof. Dr. med. Ariane Germeyer (Chairwoman)
Prof. Dr. rer. nat. Ralf Dittrich
Dr. rer. nat. Jana Liebenthron
Prof. Dr. med. Frank Nawroth
Prof. Dr. med. Nicole Sänger
Moritz Suerdieck
Prof. Dr. med. Michael von Wolff
Head Office: Weißdornweg 17, 35041 Marburg/Lahn
Tel.: +49 (0) 64 20 - 305 05 83
e-mail: info@fertiprotekt.com
www.fertiprotekt.com

D·I·R Office and D·I·R Data Management
Markus Kimmel
Kimmelnet
Lise-Meitner-Straße 14, 40591 Düsseldorf
Tel.: +49 (0) 211 913 84 800
e-mail: geschaeftsstelle@deutsches-ivf-register.de
www.german-ivf-registry.com

Technology Registry and Statistics
Fitzthum & Associates
Consulting & Technology
Ickerswarder Straße 34, 40589 Düsseldorf
Tel.: +49 (0) 211 942 587 59
e-mail: stefan@fitzthum.net

Technology Interface ARTbox® and D·I·R-own acquisition program DIProNOVA®
CRITEX GmbH
Stobaeusplatz 4, 93047 Regensburg
Tel.: +49 (0) 941 569 98 770
e-mail: mail@critex.de

Design and Layout
U&MI Visual Communication
Dipl.-Des. Soo-Hee Kim
Tel.: +49 (0) 176 125 060 07
e-mail: hello@uandmi.de
Copyright Deutsches IVF-Register e.V. (D·I·R)® 2020
Number of Treatments in 2019

Centers for IVF-, ICSI-, and Cryo Transfer Treatments

Members of the German IVF-Registry 2019
n = 137

- **Registry Participants 2019***
 n = 131

- **Data Received by Deadline Jun 2nd 2020***
 n = 131

- **Documented Treatment Cycles**
 n = 110,786

- **Number of Women Treated**
 n = 62,990

Mean Number of Treatment Cycles per Woman
1.8

Type of plausible treatment 2015 – 2019

IVF, ICSI, IVF/ICSI, Cryo Transfer – Prospective and Retrospective Data

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>15,164</td>
<td>15,879</td>
<td>15,606</td>
<td>17,285</td>
<td>17,690</td>
</tr>
<tr>
<td>%</td>
<td>15.8</td>
<td>15.8</td>
<td>15.2</td>
<td>16.4</td>
<td>16.5</td>
</tr>
<tr>
<td>IVF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>48,674</td>
<td>48,690</td>
<td>47,471</td>
<td>46,604</td>
<td>45,381</td>
</tr>
<tr>
<td>%</td>
<td>50.6</td>
<td>48.3</td>
<td>46.3</td>
<td>44.3</td>
<td>42.3</td>
</tr>
<tr>
<td>ICSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1,223</td>
<td>1,203</td>
<td>1,170</td>
<td>1,439</td>
<td>1,330</td>
</tr>
<tr>
<td>%</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>IVF/ICSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1,347</td>
<td>1,347</td>
<td>1,307</td>
<td>1,307</td>
<td>1,856</td>
</tr>
<tr>
<td>%</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.7</td>
</tr>
<tr>
<td>Freeze all - MII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>517</td>
<td>436</td>
<td>933</td>
<td>436</td>
<td>933</td>
</tr>
<tr>
<td>%</td>
<td>0.5</td>
<td>0.4</td>
<td>0.9</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Freeze All - PNs and Embryos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>23,571</td>
<td>25,008</td>
<td>27,234</td>
<td>28,698</td>
<td>30,666</td>
</tr>
<tr>
<td>%</td>
<td>24.5</td>
<td>24.8</td>
<td>26.6</td>
<td>27.3</td>
<td>28.6</td>
</tr>
<tr>
<td>Cryo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>7,492</td>
<td>9,974</td>
<td>8,907</td>
<td>9,047</td>
<td>9,263</td>
</tr>
<tr>
<td>%</td>
<td>7.8</td>
<td>9.9</td>
<td>8.7</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td>Mixed Fresh and Cryo Cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>235</td>
<td>235</td>
<td>235</td>
<td>235</td>
<td>235</td>
</tr>
<tr>
<td>%</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>None (= Break-off before oocyte treatment or thawing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>96,124</td>
<td>100,754</td>
<td>102,487</td>
<td>105,102</td>
<td>107,373</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Six centers could not be part of the nationale analyses. All centers used the interface ARTbox®.

Base quantity: Total number of women, including implausible treatment cycles
Summary of Statistics in Brief 2018 – CoD Jun 2nd 2020

IVF, ICSI and IVF/ICSI – Prospective and Retrospective Data

- **Births per Transfer:** 23.6%
- **Singletons:** 80.4%
 - n = 10,143
- **Twins:** 19.2%
 - n = 2,419
- **Triplets:** 0.4%
 - n = 56
- **Quadruplets:** 0.0%
 - n = 0
- **Miscarriage:** 19.8%
 - n = 3,416

Data for 1982 to 2014 are published and available. Separate presentation of GIFT, ZIFT, IVF/ICSI was abstained from.

*) Where IVF/ICSI is not explicitly mentioned, the treatments were added to ICSI.

Number of Oocyte Retrievals (Freshcycles) 1982 – 2019

- **Number of Thawing Cycles 1994 – 2019**
- **Registry Participants 1982 – 2019**

IVF, ICSI* – Prospective and Retrospective Data
Quality of Documentation 2018/2019
Plausible and Prospectively Documented Cycles, Cycle- and Pregnancy-Outcomes

Analyses results can only be as good as the underlying data. The D-I-R-team is grateful to all participating centers and their meticulous work!

Plausible Cycles 2019
107,373 plausible cycles out of 110,786 documented cycles. 96.9% of documented cycles are plausible. This does unfortunately not imply completeness of data required, thus impeding detailed analyses.

Prospectively Documented Cycles 2019
97,147 prospectively documented cycles out of 107,373 plausible cycles. 90.5% of documented cycles were prospectively documented. Worldwide, only the German IVF Registry separately shows the prospective cycles. This in itself is an indicator for quality!

Documented Cycle-Outcomes 2019
In 81,700 out of 82,242 embryo transfers, the cycle outcome was documented (99.3%).

Documented Pregnancy Outcomes 2018
In 23,966 out of 25,230 clinical pregnancies, the pregnancy outcome was documented (95.0%).

We are well aware that the meticulous documentation of these relevant data is troublesome, laborious and resource-binding.

The D-I-R data analyses team is therefore very happy to state that for the second year the percentage of prospectively documented cycles is above 90%.

Furthermore we are especially happy that the percentage of documented pregnancy outcomes has increased again. 72.1% of individual centers have reached the goal of documenting more than 95% of pregnancy outcomes. 48.1% have even reached a documentation rate on >98%, 25 centers even 100%!

The dedicated goal of the D-I-R board of directors and board of trustees is to motivate the members of the D-I-R to furthermore keep their focus on the prospectivity and to achieve also for the next year a rate of documented pregnancy outcomes of 95 plus percent.
Birth Rate per Treatment Level in Fresh and Cryo Treatment Cycles 2017 and 2018

Prospective and Retrospective Data

With a 95%-probability, the true mean lies within the defined confidence interval.
D·I·R Statistics in Brief – Fresh Cycles 2019 (CoD Jun 2nd 2020)

German IVF Registry – Prospective and Retrospective Data

Recorded Cycles 2019

| Recorded Cycles 2019 | 110,786 | 100.0% |

Plausible Cycles 2019 (Prospective and not Prospective)

| Plausible Cycles 2019 | 107,373 | 96.9% |

Prospective Cycles

| Prospective Cycles | 97,147 | 90.5% |

Preparation for OPU

| Preparation for OPU | 74,715 | 69.6% |

OPU

| OPU | 69,337 | 92.8% |
| No OPU | 5,378 | 7.2% |

Oocytes Aspirated

| Oocytes Aspirated | 67,334 | 97.1% |
| No Oocytes | 2,003 | 2.9% |

Oocyte Culture

Oocyte Culture	65,334	97.0%
Freeze All – MII*	1,856	2.8%
No Oocyte Culture	144	0.2%

Oocyte for Transfer

| Oocyte for Transfer | 64,401 | 98.6% |
| Freeze All – Oocyte Culture | 933 | 1.4% |

Total Fresh Cycles

| Total Fresh Cycles | 64,401 | 100.0% |

Total Fertilization

| Total Fertilization | 60,720 | 94.3% |

Total Transfer

| Total Transfer | 53,012 | 87.3% |
| Outc. Unknown | 285 | 0.5% |

Total CPR/ET (doc.)

| Total CPR/ET (doc.) (per Treatment 25.9%) | 16,677 | 31.6% |

IVF

IVF	17,690	27.5%
Fertilization	16,320	92.3%
Transfer	14,380	88.1%

ICSI

ICSI	45,381	70.5%
Fertilization	43,081	94.9%
Transfer	37,572	87.2%

IVF/ICSI

| IVF/ICSI | 1,330 | 2.1% |

Fertilization

| Fertilization | 1,319 | 99.2% |
| Transfer | 1,060 | 80.4% |

Transfer

| Transfer | 1,060 | 80.4% |

CPR/ET (doc.)

CPR/ET (doc.) (per IVF-Treatment 26.9%)	4,755	33.2%
CPR/ET (doc.) (per ICSI-Treatment 25.4%)	11,549	30.9%
CPR/ET (doc.) (per IVF/ICSI-Treatment 28.0%)	373	35.5%

*) Out of 1,856 cycles with freeze-all MII oocytes, 390 cycles were performed for FertiPROTECT (=medical freezing) and 953 cycles for social freezing. 513 cycles could not be assigned to either indication.
Out of 1,307 cycles with freeze-all MII oocytes, 280 cycles were performed for FertiPROTECT (=medical freezing) and 791 cycles for social freezing. 236 cycles could not be assigned to either indication.

<table>
<thead>
<tr>
<th>Recorded Cycles 2018</th>
<th>106,397</th>
<th>100.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plausible Cycles 2018 (Prospective and not Prospective)</td>
<td>105,102</td>
<td>98.8%</td>
</tr>
<tr>
<td>Prospective Cycles</td>
<td>94,866</td>
<td>90.3%</td>
</tr>
<tr>
<td>Preparation for OPU</td>
<td>74,762</td>
<td>71.1%</td>
</tr>
<tr>
<td>OPU</td>
<td>69,757</td>
<td>93.3%</td>
</tr>
<tr>
<td>No OPU</td>
<td>5,005</td>
<td>6.7%</td>
</tr>
<tr>
<td>Oocytes Aspirated</td>
<td>67,811</td>
<td>97.2%</td>
</tr>
<tr>
<td>No Oocytes</td>
<td>1,946</td>
<td>2.8%</td>
</tr>
<tr>
<td>Oocyte Culture</td>
<td>65,764</td>
<td>97.0%</td>
</tr>
<tr>
<td>Freeze All – MII</td>
<td>1,307</td>
<td>1.9%</td>
</tr>
<tr>
<td>No Oocyte Culture</td>
<td>740</td>
<td>1.1%</td>
</tr>
<tr>
<td>Oocyte for Transfer</td>
<td>65,328</td>
<td>99.3%</td>
</tr>
<tr>
<td>Freeze All – Oocyte Culture</td>
<td>436</td>
<td>0.7%</td>
</tr>
<tr>
<td>Total Fresh Cycles</td>
<td>65,328</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total Fertilization</td>
<td>61,230</td>
<td>93.7%</td>
</tr>
<tr>
<td>Total Transfer</td>
<td>53,627</td>
<td>87.6%</td>
</tr>
<tr>
<td>Outc. Unknown</td>
<td>144</td>
<td>0.3%</td>
</tr>
<tr>
<td>Total CPR/ET (doc.)</td>
<td>17,226</td>
<td>32.2%</td>
</tr>
<tr>
<td>(per Treatment 26.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR/ET (doc.)</td>
<td>4,644</td>
<td>33.5%</td>
</tr>
<tr>
<td>(per IVF-Treatment 26.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc.</td>
<td>3,476</td>
<td>20.2%</td>
</tr>
<tr>
<td>EP</td>
<td>247</td>
<td>1.4%</td>
</tr>
<tr>
<td>Not yet Recorded</td>
<td>885</td>
<td>5.1%</td>
</tr>
<tr>
<td>Birth (doc.)</td>
<td>12,618</td>
<td>73.2%</td>
</tr>
<tr>
<td>(per Transfer 23.5%, per Tream. 19.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Births</td>
<td>12,534</td>
<td>76.1%</td>
</tr>
<tr>
<td>(per Transfer 25.4%, per Tream. 20.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth</td>
<td>8,798</td>
<td>72.2%</td>
</tr>
<tr>
<td>(per Transfer 22.8%, per Tream. 18.9%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IVF	17,285	26.5%
Fertilization	15,772	91.2%
Transfer	13,926	88.3%
Outc. Unknown	54	0.4%
ICSI	46,604	71.3%
Fertilization	44,032	94.5%
Transfer	38,572	89.2%
Outc. Unknown	88	0.2%
IVF/ICSI	1,439	2.2%
Fertilization	1,426	99.1%
Transfer	1,129	79.2%
Outc. Unknown	5	0.4%

Misc.	2,438	20.0%
EP	147	1.2%
Not yet Recorded	811	6.7%
Birth (doc.)	7,106	80.8%
(per Transfer 22.8%, per Tream. 18.9%)		
Births	7,211	79.3%
(per Transfer 25.4%, per Tream. 20.4%)		
Birth	1,652	18.8%
(per Transfer 22.8%, per Tream. 18.9%)		

Misc.	70	18.0%
EP	4	1.0%
Not yet Recorded	28	7.2%
Birth (doc.)	286	73.7%
(per Transfer 23.5%, per Tream. 19.9%)		

Singletons	10,143	80.4%
Twins	2,419	19.2%
Triplets	56	0.4%
Quadruplets	0	-

Singletons	2,801	79.3%
Twins	721	20.4%
Triplets	12	0.3%
Quadruplets	0	-

Singletons	7,106	80.8%
Twins	1,652	18.8%
Triplets	40	0.5%
Quadruplets	0	-
D·I·R Statistics in Brief – Cryo Cycles 2019 (CoD Jun 2nd 2020)

German IVF Registry – Prospective and Retrospective Data

Recorded Cycles 2019

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>110,786</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Plausible Cycles 2019 (Prospective and not Prospective)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>107,373</td>
<td>96.9%</td>
</tr>
</tbody>
</table>

Prospective Cycles

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>97,147</td>
<td>90.5%</td>
</tr>
</tbody>
</table>

Preparation for Cryo Transfer

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32,658</td>
<td>30.4%</td>
</tr>
</tbody>
</table>

Thawing

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thawing</td>
<td>30,666</td>
</tr>
<tr>
<td></td>
<td>93.9%</td>
</tr>
<tr>
<td>No Thawing</td>
<td>1,992</td>
</tr>
<tr>
<td></td>
<td>6.1%</td>
</tr>
</tbody>
</table>

Fertilization

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>87.4%</td>
</tr>
</tbody>
</table>

Transfer

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95.0%</td>
</tr>
</tbody>
</table>

Total Thawing

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29,230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95.3%</td>
</tr>
</tbody>
</table>

Thawing ex IVF

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.6%</td>
</tr>
</tbody>
</table>

Thawing ex ICSI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21,395</td>
<td></td>
</tr>
<tr>
<td></td>
<td>69.8%</td>
</tr>
</tbody>
</table>

Thawing Oocytes

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>254</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Thawing Others*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>862</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Total CPR/ET (doc.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,573</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.6%</td>
</tr>
</tbody>
</table>

CPR/ET (doc.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,428</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.3%</td>
</tr>
</tbody>
</table>

CPR/ET (doc.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5,959</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.4%</td>
</tr>
</tbody>
</table>

CPR/ET (doc.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.4%</td>
</tr>
</tbody>
</table>

CPR/ET (doc.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.7%</td>
</tr>
</tbody>
</table>

*) Thawing others means cycles with unknown previous treatment, previous treatment not documented or previous treatment has partly been IVF and ICSI.
D·I·R Statistics in Brief – Cryo Cycles 2018 (CoD Jun 2nd 2020)

German IVF Registry – Prospective and Retrospective Data

<table>
<thead>
<tr>
<th>Recorded Cycles 2018</th>
<th>106,397</th>
<th>100.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plausible Cycles 2018 (Prospective and not Prospective)</td>
<td>105,102</td>
<td>98.8%</td>
</tr>
<tr>
<td>Prospective Cycles</td>
<td>94,866</td>
<td>90.3%</td>
</tr>
</tbody>
</table>

Preparation for Cryo Transfer

30,340 | 29.8% |

- **Thawing**
 - 28,698 | 94.6% |
 - 1,642 | 5.4% |

- **Fertilization**
 - 245 | 91.4% |
 - 222 | 90.6% |

- **Misc.**
 - 2,035 | 25.4% |
 - 379 | 4.7% |

Thawing ex IVF	7,355	25.6%
Thawing ex ICSI	20,041	69.8%
Thawing Others*	1,034	3.6%
Thawing Oocytes	268	0.9%

| CPR/ET (doc.) | 5,759 | 30.1% |
| CPR/ET (doc.) | 54 | 24.9% |

Misc.	1,440	25.0%
EP	15	9.4%
Not yet Rec.	322	5.6%
Misc.	2	3.7%
EP	0	0.0%
Not yet Rec.	27	50.0%

Birth (doc.)	1,396	68.7%
(per Tr. 19.8%, p. Tr. 19.0%)		
Misc.	3,941	68.4%
EP	137	85.6%
Not yet Rec.	54	61.2%
Misc.	2	3.7%
EP	0	0.0%
Not yet Rec.	27	50.0%

<table>
<thead>
<tr>
<th>Briths</th>
<th>n %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singletons</td>
<td>4,780</td>
</tr>
<tr>
<td>Twins</td>
<td>701</td>
</tr>
<tr>
<td>Triplets</td>
<td>18</td>
</tr>
<tr>
<td>Quadruplets</td>
<td>0</td>
</tr>
<tr>
<td>Singletons</td>
<td>1,211</td>
</tr>
<tr>
<td>Twins</td>
<td>182</td>
</tr>
<tr>
<td>Triplets</td>
<td>3</td>
</tr>
<tr>
<td>Quadruplets</td>
<td>0</td>
</tr>
<tr>
<td>Singletons</td>
<td>3,419</td>
</tr>
<tr>
<td>Twins</td>
<td>507</td>
</tr>
<tr>
<td>Triplets</td>
<td>15</td>
</tr>
<tr>
<td>Quadruplets</td>
<td>0</td>
</tr>
<tr>
<td>Singletons</td>
<td>128</td>
</tr>
<tr>
<td>Twins</td>
<td>9</td>
</tr>
<tr>
<td>Triplets</td>
<td>0</td>
</tr>
<tr>
<td>Quadruplets</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Briths</th>
<th>n %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singletons</td>
<td>22</td>
</tr>
<tr>
<td>Twins</td>
<td>3</td>
</tr>
<tr>
<td>Triplets</td>
<td>0</td>
</tr>
<tr>
<td>Quadruplets</td>
<td>0</td>
</tr>
</tbody>
</table>

*) Thawing others means cycles with unknown previous treatment, previous treatment not documented or previous treatment has partly been IVF and ICSI.
Pregnancy Rate and Ongoing Pregnancy as a Function of Female Age 2018

Prospective Data

IVF 2018

<table>
<thead>
<tr>
<th>Age in Years</th>
<th><=29</th>
<th>30 – 34</th>
<th>35 – 39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>>=45 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPU</td>
<td>1,886</td>
<td>4,917</td>
<td>6,629</td>
<td>678</td>
<td>615</td>
<td>417</td>
<td>312</td>
<td>196</td>
<td>115</td>
</tr>
<tr>
<td>Oocytes</td>
<td>11.7</td>
<td>10.5</td>
<td>8.3</td>
<td>6.8</td>
<td>6.3</td>
<td>5.5</td>
<td>5.6</td>
<td>4.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Insemination</td>
<td>11.1</td>
<td>10.3</td>
<td>8.2</td>
<td>6.7</td>
<td>6.2</td>
<td>5.5</td>
<td>5.6</td>
<td>4.6</td>
<td>3.4</td>
</tr>
<tr>
<td>ET</td>
<td>1,488</td>
<td>4,057</td>
<td>5,500</td>
<td>545</td>
<td>494</td>
<td>320</td>
<td>236</td>
<td>152</td>
<td>76</td>
</tr>
<tr>
<td>ET/OPU %</td>
<td>78.9</td>
<td>82.5</td>
<td>83.0</td>
<td>80.4</td>
<td>80.3</td>
<td>76.7</td>
<td>75.6</td>
<td>77.6</td>
<td>66.1</td>
</tr>
<tr>
<td>Trans. Embr.</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>CP</td>
<td>607</td>
<td>1,604</td>
<td>1,813</td>
<td>130</td>
<td>100</td>
<td>51</td>
<td>33</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>CP/OPU %</td>
<td>32.2</td>
<td>32.6</td>
<td>27.3</td>
<td>19.2</td>
<td>16.3</td>
<td>12.2</td>
<td>10.6</td>
<td>6.6</td>
<td>1.7</td>
</tr>
<tr>
<td>CP/ET Upper Conf. Limit %</td>
<td>43.4</td>
<td>41.2</td>
<td>34.4</td>
<td>26.3</td>
<td>23.9</td>
<td>19.4</td>
<td>17.9</td>
<td>11.6</td>
<td>3.5</td>
</tr>
<tr>
<td>CP/ET %</td>
<td>40.8</td>
<td>39.5</td>
<td>33.0</td>
<td>23.9</td>
<td>20.2</td>
<td>15.9</td>
<td>14.0</td>
<td>8.6</td>
<td>2.6</td>
</tr>
<tr>
<td>CP/ET Lower Conf. Limit %</td>
<td>38.2</td>
<td>38.1</td>
<td>31.8</td>
<td>21.6</td>
<td>17.0</td>
<td>13.0</td>
<td>10.8</td>
<td>6.2</td>
<td>2.0</td>
</tr>
<tr>
<td>CP/ET %: 2 Embryo Transfer + min. 2 remaining 2-PN Embryo Surplus</td>
<td>44.5</td>
<td>43.7</td>
<td>38.9</td>
<td>29.4</td>
<td>23.9</td>
<td>19.3</td>
<td>16.7</td>
<td>15.3</td>
<td>7.0</td>
</tr>
<tr>
<td>Misc./CP Upper Conf. Limit %</td>
<td>17.6</td>
<td>18.9</td>
<td>23.1</td>
<td>41.4</td>
<td>45.4</td>
<td>56.0</td>
<td>56.8</td>
<td>62.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Misc./CP %</td>
<td>15.8</td>
<td>15.9</td>
<td>22.4</td>
<td>37.7</td>
<td>40.0</td>
<td>49.0</td>
<td>48.3</td>
<td>53.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Misc./CP Lower Conf. Limit %</td>
<td>11.6</td>
<td>15.0</td>
<td>18.6</td>
<td>32.2</td>
<td>29.2</td>
<td>38.0</td>
<td>33.9</td>
<td>30.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Births/ET Upper Conf. Limit %</td>
<td>35.0</td>
<td>33.6</td>
<td>25.0</td>
<td>26.2</td>
<td>23.0</td>
<td>18.2</td>
<td>16.4</td>
<td>9.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Births/ET %</td>
<td>32.1</td>
<td>32.4</td>
<td>24.7</td>
<td>14.9</td>
<td>10.9</td>
<td>6.9</td>
<td>7.6</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Births/ET Lower Conf. Limit %</td>
<td>29.8</td>
<td>30.6</td>
<td>22.5</td>
<td>8.7</td>
<td>8.9</td>
<td>4.7</td>
<td>4.7</td>
<td>1.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

1) Mean
* With a 95%-probability, the true mean lies within the defined confidence interval.
Pregnancy Rate and Ongoing Pregnancy as a Function of Female Age 2018

Prospective Data

ICSI 2018

<table>
<thead>
<tr>
<th>Age in Years</th>
<th><= 29</th>
<th>30 – 34</th>
<th>35 – 39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>>=45</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPU</td>
<td>5,596</td>
<td>13,629</td>
<td>18,094</td>
<td>2,059</td>
<td>1,578</td>
<td>1,253</td>
<td>875</td>
<td>541</td>
<td>491</td>
<td>44,116</td>
</tr>
<tr>
<td>Oocytes¹</td>
<td>12.2</td>
<td>11.2</td>
<td>8.8</td>
<td>6.9</td>
<td>6.6</td>
<td>5.9</td>
<td>5.5</td>
<td>5.5</td>
<td>4.2</td>
<td>9.6</td>
</tr>
<tr>
<td>Injection¹</td>
<td>8.9</td>
<td>8.6</td>
<td>6.8</td>
<td>5.4</td>
<td>5.2</td>
<td>4.6</td>
<td>4.1</td>
<td>3.9</td>
<td>3.2</td>
<td>7.3</td>
</tr>
<tr>
<td>ET</td>
<td>4,653</td>
<td>11,603</td>
<td>15,397</td>
<td>1,657</td>
<td>1,259</td>
<td>991</td>
<td>653</td>
<td>412</td>
<td>327</td>
<td>36,952</td>
</tr>
<tr>
<td>ET/OPU</td>
<td>83.1</td>
<td>85.1</td>
<td>85.1</td>
<td>80.5</td>
<td>79.8</td>
<td>79.1</td>
<td>74.6</td>
<td>76.2</td>
<td>66.6</td>
<td>83.8</td>
</tr>
<tr>
<td>Trans. Emb.¹</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>CP</td>
<td>1,824</td>
<td>4,423</td>
<td>4,712</td>
<td>347</td>
<td>228</td>
<td>153</td>
<td>69</td>
<td>26</td>
<td>8</td>
<td>11,790</td>
</tr>
<tr>
<td>CP/OPU</td>
<td>32.6</td>
<td>32.5</td>
<td>26.0</td>
<td>16.9</td>
<td>14.4</td>
<td>12.2</td>
<td>7.9</td>
<td>4.8</td>
<td>1.6</td>
<td>26.7</td>
</tr>
<tr>
<td>CP/ET</td>
<td>40.7</td>
<td>39.0</td>
<td>31.3</td>
<td>23.1</td>
<td>21.4</td>
<td>18.7</td>
<td>13.5</td>
<td>8.6</td>
<td>3.2</td>
<td>32.4</td>
</tr>
<tr>
<td>CP/ET Upper Limit*%</td>
<td>39.2</td>
<td>38.1</td>
<td>30.6</td>
<td>20.9</td>
<td>18.1</td>
<td>15.4</td>
<td>10.6</td>
<td>6.3</td>
<td>2.4</td>
<td>31.9</td>
</tr>
<tr>
<td>CP/ET Lower Limit*%</td>
<td>37.8</td>
<td>37.2</td>
<td>29.9</td>
<td>19.0</td>
<td>15.2</td>
<td>12.6</td>
<td>8.2</td>
<td>4.6</td>
<td>1.8</td>
<td>31.4</td>
</tr>
<tr>
<td>CP/ET %: 2 Emb. Trans. + min. 2 2-PN Surplus</td>
<td>43.7</td>
<td>42.3</td>
<td>38.1</td>
<td>29.0</td>
<td>25.0</td>
<td>19.5</td>
<td>14.2</td>
<td>11.9</td>
<td>13.8</td>
<td>36.2</td>
</tr>
<tr>
<td>Misc./CP Upper Limit*%</td>
<td>14.4</td>
<td>17.5</td>
<td>23.9</td>
<td>35.5</td>
<td>42.3</td>
<td>55.2</td>
<td>47.5</td>
<td>71.4</td>
<td>100.0</td>
<td>20.7</td>
</tr>
<tr>
<td>Misc./CP %</td>
<td>12.8</td>
<td>16.4</td>
<td>22.7</td>
<td>32.3</td>
<td>37.3</td>
<td>48.4</td>
<td>40.6</td>
<td>61.5</td>
<td>75.0</td>
<td>19.9</td>
</tr>
<tr>
<td>Misc./CP Lower Limit*%</td>
<td>11.4</td>
<td>16.0</td>
<td>21.6</td>
<td>27.6</td>
<td>27.2</td>
<td>37.5</td>
<td>28.4</td>
<td>35.3</td>
<td>52.2</td>
<td>19.2</td>
</tr>
<tr>
<td>Births/ET Upper Limit*%</td>
<td>30.4</td>
<td>28.4</td>
<td>21.3</td>
<td>13.2</td>
<td>10.7</td>
<td>7.8</td>
<td>5.9</td>
<td>2.3</td>
<td>0.4</td>
<td>24.6</td>
</tr>
<tr>
<td>Births/ET %</td>
<td>29.1</td>
<td>27.8</td>
<td>20.7</td>
<td>12.6</td>
<td>10.5</td>
<td>7.0</td>
<td>5.1</td>
<td>1.9</td>
<td>0.3</td>
<td>23.1</td>
</tr>
<tr>
<td>Births/ET Lower Limit*%</td>
<td>27.7</td>
<td>27.0</td>
<td>20.1</td>
<td>11.4</td>
<td>8.8</td>
<td>6.3</td>
<td>4.6</td>
<td>1.7</td>
<td>0.3</td>
<td>21.7</td>
</tr>
</tbody>
</table>

¹ Mean
* With a 95%-probability, the true mean lies within the defined confidence interval.
Pregnancy Rate and Ongoing Pregnancy as a Function of Female Age 2014 – 2018

Prospective Data

IVF 2014 – 2018

<table>
<thead>
<tr>
<th>Age in Years</th>
<th>OPU</th>
<th>30 – 34</th>
<th>35 – 39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>>=45</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><=24</td>
<td>271</td>
<td>364</td>
<td>743</td>
<td>1,124</td>
<td>1,663</td>
<td>2,140</td>
<td>2,768</td>
<td>3,190</td>
<td>3,594</td>
<td>3,962</td>
</tr>
<tr>
<td>%</td>
<td>34.3</td>
<td>43.4</td>
<td>43.1</td>
<td>41.1</td>
<td>42.2</td>
<td>41.2</td>
<td>40.9</td>
<td>42.0</td>
<td>39.3</td>
<td>39.8</td>
</tr>
<tr>
<td>n</td>
<td>271</td>
<td>364</td>
<td>743</td>
<td>1,124</td>
<td>1,663</td>
<td>2,140</td>
<td>2,768</td>
<td>3,190</td>
<td>3,594</td>
<td>3,962</td>
</tr>
<tr>
<td>Misc./CP Upper Confidence Limit* %</td>
<td>16.1</td>
<td>15.9</td>
<td>20.6</td>
<td>33.3</td>
<td>40.7</td>
<td>46.6</td>
<td>50.3</td>
<td>63.2</td>
<td>65.8</td>
<td>19.7</td>
</tr>
<tr>
<td>Misc./CP %</td>
<td>14.7</td>
<td>15.0</td>
<td>19.7</td>
<td>30.3</td>
<td>35.9</td>
<td>40.8</td>
<td>42.9</td>
<td>54.5</td>
<td>57.4</td>
<td>19.1</td>
</tr>
<tr>
<td>Misc./CP Lower Confidence Limit* %</td>
<td>13.4</td>
<td>14.2</td>
<td>18.8</td>
<td>27.5</td>
<td>31.6</td>
<td>36.7</td>
<td>43.3</td>
<td>46.0</td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td>Births/ET</td>
<td>27.8</td>
<td>27.1</td>
<td>27.1</td>
<td>13.7</td>
<td>11.6</td>
<td>8.2</td>
<td>6.3</td>
<td>3.8</td>
<td>3.3</td>
<td>22.3</td>
</tr>
<tr>
<td>Births/ET Lower Confidence Limit* %</td>
<td>26.7</td>
<td>26.5</td>
<td>26.5</td>
<td>12.7</td>
<td>10.8</td>
<td>7.5</td>
<td>5.5</td>
<td>3.3</td>
<td>2.8</td>
<td>21.3</td>
</tr>
</tbody>
</table>

1) Mean
* With a 95%-probability, the true mean lies within the defined confidence interval.
Pregnancy Rate and Ongoing Pregnancy as a Function of Female Age 2014 – 2018

Prospective Data

ICSI 2014 – 2018

<table>
<thead>
<tr>
<th>Age in Years</th>
<th><=29</th>
<th>30 – 34</th>
<th>35 – 39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>>=45</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPU</td>
<td>26,477</td>
<td>64,870</td>
<td>84,483</td>
<td>16,119</td>
<td>8,640</td>
<td>7,100</td>
<td>5,185</td>
<td>3,235</td>
<td>11,575</td>
<td>219,965</td>
</tr>
<tr>
<td>Oocytes</td>
<td>11.5</td>
<td>10.4</td>
<td>8.4</td>
<td>7.1</td>
<td>6.3</td>
<td>6.1</td>
<td>5.5</td>
<td>5.0</td>
<td>4.7</td>
<td>8.8</td>
</tr>
<tr>
<td>ET/OPU %</td>
<td>81.5</td>
<td>86.8</td>
<td>86.3</td>
<td>89.8</td>
<td>85.1</td>
<td>85.5</td>
<td>74.8</td>
<td>70.0</td>
<td>76.2</td>
<td>85.4</td>
</tr>
<tr>
<td>Trans. Embryos</td>
<td>1.8</td>
<td>1.9</td>
<td>1.8</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>CP</td>
<td>8,470</td>
<td>21,429</td>
<td>22,976</td>
<td>3,447</td>
<td>1,465</td>
<td>970</td>
<td>541</td>
<td>256</td>
<td>173</td>
<td>59,664</td>
</tr>
<tr>
<td>CP/OPU %</td>
<td>31.8</td>
<td>33.0</td>
<td>27.1</td>
<td>21.4</td>
<td>17.0</td>
<td>13.8</td>
<td>10.4</td>
<td>7.9</td>
<td>4.8</td>
<td>27.1</td>
</tr>
<tr>
<td>CP/ET Upper Confidence Limit %</td>
<td>39.6</td>
<td>38.5</td>
<td>31.7</td>
<td>24.5</td>
<td>20.8</td>
<td>17.2</td>
<td>15.1</td>
<td>12.7</td>
<td>7.3</td>
<td>32.2</td>
</tr>
<tr>
<td>CP/ET %</td>
<td>38.9</td>
<td>38.1</td>
<td>31.4</td>
<td>23.8</td>
<td>19.9</td>
<td>16.2</td>
<td>14.0</td>
<td>11.3</td>
<td>6.3</td>
<td>31.8</td>
</tr>
<tr>
<td>CP/ET Lower Confidence Limit %</td>
<td>38.3</td>
<td>37.7</td>
<td>31.0</td>
<td>23.1</td>
<td>19.0</td>
<td>15.3</td>
<td>12.9</td>
<td>10.1</td>
<td>5.5</td>
<td>31.4</td>
</tr>
<tr>
<td>CP/ET %: 2 Embryo Transf. + min. 2 PNa Surplus</td>
<td>44.4</td>
<td>43.0</td>
<td>37.6</td>
<td>29.2</td>
<td>24.6</td>
<td>21.4</td>
<td>18.4</td>
<td>11.5</td>
<td>10.6</td>
<td>37.4</td>
</tr>
<tr>
<td>Misc./CP Upper Confidence Limit %</td>
<td>14.1</td>
<td>15.6</td>
<td>21.4</td>
<td>33.8</td>
<td>39.3</td>
<td>44.3</td>
<td>50.4</td>
<td>56.2</td>
<td>48.4</td>
<td>19.9</td>
</tr>
<tr>
<td>Misc./CP %</td>
<td>13.3</td>
<td>15.1</td>
<td>20.9</td>
<td>30.8</td>
<td>34.6</td>
<td>38.8</td>
<td>43.1</td>
<td>48.4</td>
<td>42.2</td>
<td>19.3</td>
</tr>
<tr>
<td>Misc./CP Lower Confidence Limit %</td>
<td>12.6</td>
<td>14.2</td>
<td>18.8</td>
<td>29.3</td>
<td>32.3</td>
<td>35.7</td>
<td>39.1</td>
<td>42.6</td>
<td>35.6</td>
<td>18.8</td>
</tr>
<tr>
<td>Births/ET Upper Confidence Limit %</td>
<td>28.5</td>
<td>27.5</td>
<td>21.0</td>
<td>14.5</td>
<td>12.1</td>
<td>8.8</td>
<td>7.2</td>
<td>5.2</td>
<td>3.2</td>
<td>21.5</td>
</tr>
<tr>
<td>Births/ET %</td>
<td>28.0</td>
<td>27.1</td>
<td>20.7</td>
<td>13.3</td>
<td>10.8</td>
<td>7.7</td>
<td>6.2</td>
<td>4.5</td>
<td>2.7</td>
<td>21.3</td>
</tr>
<tr>
<td>Births/ET Lower Confidence Limit %</td>
<td>27.4</td>
<td>26.8</td>
<td>20.4</td>
<td>12.6</td>
<td>9.9</td>
<td>7.1</td>
<td>5.6</td>
<td>3.9</td>
<td>2.3</td>
<td>20.8</td>
</tr>
</tbody>
</table>

1) Mean

* With a 95%-probability, the true mean lies within the defined confidence interval.
Results IVF, ICSI (COHS) and IVF and ICSI in Natural Cycles 2018

Prospective Data

IVF 2018

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
<th>Fertilization %</th>
<th>Embryo %</th>
<th>Transfer %</th>
<th>Clin. Preg. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performed IVF Treatm.</td>
<td>15,804</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful Fertilization*</td>
<td>14,384</td>
<td>91.0</td>
<td></td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum 1 Embryo</td>
<td>13,975</td>
<td>88.4</td>
<td>97.2</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET Performed</td>
<td>12,868</td>
<td>81.4</td>
<td>89.5</td>
<td>92.1</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Clin. Pregnancy</td>
<td>4,353</td>
<td>27.5</td>
<td>30.3</td>
<td>31.1</td>
<td>33.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Birth</td>
<td>3,329</td>
<td>21.1</td>
<td>23.1</td>
<td>23.8</td>
<td>25.9</td>
<td>76.5</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>896</td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectopic Pregnancy</td>
<td>94</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Yet Recorded</td>
<td>34</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Successful fertilization of at least one oocyte per cycle

ICSI 2018

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
<th>Fertilization %</th>
<th>Embryo %</th>
<th>Transfer %</th>
<th>Clin. Preg. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performed ICSI Treatm.</td>
<td>44,478</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful Fertilization*</td>
<td>42,066</td>
<td>94.6</td>
<td></td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum 1 Embryo</td>
<td>38,821</td>
<td>87.3</td>
<td>92.3</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET Performed</td>
<td>36,952</td>
<td>83.1</td>
<td>87.8</td>
<td>95.2</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Clin. Pregnancy</td>
<td>11,790</td>
<td>26.5</td>
<td>28.0</td>
<td>30.4</td>
<td>31.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Birth</td>
<td>8,545</td>
<td>19.2</td>
<td>20.3</td>
<td>22.0</td>
<td>23.1</td>
<td>72.5</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>2,350</td>
<td>19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectopic Pregnancy</td>
<td>143</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Yet Recorded</td>
<td>752</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IVF and ICSI in Natural Cycles 2018**

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
<th>Fertilization %</th>
<th>Embryo %</th>
<th>Transfer %</th>
<th>Clin. Preg. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatm. Without Stim. or with Low-Dose-Stimulation**</td>
<td>462</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful Fertilization*</td>
<td>366</td>
<td>79.2</td>
<td>100.0</td>
<td>76.2</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Minimum 1 Embryo</td>
<td>279</td>
<td>60.4</td>
<td>76.2</td>
<td>93.9</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>ET Performed</td>
<td>262</td>
<td>56.7</td>
<td>71.6</td>
<td>93.9</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Clin. Pregnancy</td>
<td>63</td>
<td>13.6</td>
<td>17.2</td>
<td>22.6</td>
<td>24.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Birth</td>
<td>39</td>
<td>8.4</td>
<td>10.7</td>
<td>14.0</td>
<td>14.9</td>
<td>61.9</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>17</td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectopic Pregnancy</td>
<td>0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Yet Recorded</td>
<td>7</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Successful fertilization of at least one oocyte per cycle

**) Natural cycle and natural cycle with low-dose-stimulation were newly defined in the data set. Only clearly allocatable cycles were included into the analyses. The total number is most likely higher.
Results of Thawing-Cycles, TESE, IVF and ICSI with Donor Semen 2018

Prospective Data

Cryo Transfer Cycles 2018

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
<th>PN/Embryo %</th>
<th>Transfer %</th>
<th>Clin. Preg. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryo Transfer Cycles</td>
<td>26,382</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thawed PN/Embryo</td>
<td>25,676</td>
<td>97.3</td>
<td>98.4</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>ET Performed</td>
<td>25,278</td>
<td>95.8</td>
<td>95.3</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Clin. Pregnancy</td>
<td>7,441</td>
<td>28.2</td>
<td>29.0</td>
<td>29.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Birth</td>
<td>5,210</td>
<td>19.7</td>
<td>20.3</td>
<td>20.6</td>
<td>70.0</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>1,871</td>
<td></td>
<td></td>
<td></td>
<td>25.1</td>
</tr>
<tr>
<td>Ectopic Pregnancy</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Not Yet Recorded</td>
<td>273</td>
<td></td>
<td></td>
<td></td>
<td>3.7</td>
</tr>
</tbody>
</table>

TESE 2018

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
<th>Fertilization %</th>
<th>Embryo %</th>
<th>Transfer %</th>
<th>Clin. Preg. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perf. ICSI/TESE Treatm.</td>
<td>2,258</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful Fertilization*</td>
<td>2,134</td>
<td>94.5</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum 1 Embryo</td>
<td>2,038</td>
<td>90.3</td>
<td>95.5</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET Performed</td>
<td>1,954</td>
<td>86.5</td>
<td>91.6</td>
<td>95.9</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Clin. Pregnancy</td>
<td>631</td>
<td>27.9</td>
<td>29.6</td>
<td>31.0</td>
<td>32.3</td>
<td>100.0</td>
</tr>
<tr>
<td>Birth</td>
<td>434</td>
<td>19.2</td>
<td>20.3</td>
<td>21.0</td>
<td>22.2</td>
<td>68.8</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.2</td>
</tr>
<tr>
<td>Ectopic Pregnancy</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>Not Yet Recorded</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.1</td>
</tr>
</tbody>
</table>

IVF and ICSI with Donor Semen 2018**

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
<th>Fertilization %</th>
<th>Embryo %</th>
<th>Transfer %</th>
<th>Clin. Preg. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART-Treatm. (donor sperm)**</td>
<td>1,129</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful Fertilization*</td>
<td>861</td>
<td>76.3</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum 1 Embryo</td>
<td>803</td>
<td>71.1</td>
<td>93.3</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET Performed</td>
<td>801</td>
<td>70.9</td>
<td>93.0</td>
<td>99.8</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Clin. Pregnancy</td>
<td>272</td>
<td>24.1</td>
<td>31.6</td>
<td>33.9</td>
<td>34.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Birth</td>
<td>131</td>
<td>11.6</td>
<td>15.2</td>
<td>16.3</td>
<td>16.4</td>
<td>48.2</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.5</td>
</tr>
<tr>
<td>Ectopic Pregnancy</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Not Yet Recorded</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.9</td>
</tr>
</tbody>
</table>

*) Successful fertilization of at least one oocyte per cycle
**) Currently, the data processing is not completely validated. Only cycles with definite data validation were included in this analysis.
Positive Pregnancy Outcomes 2018
IVF, ICSI – Prospective and Retrospective Data

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Pregnancies</td>
<td>17,226</td>
<td>100.0</td>
</tr>
<tr>
<td>Outcome documented</td>
<td>16,341</td>
<td>94.9</td>
</tr>
<tr>
<td>Transfer</td>
<td>53,627</td>
<td></td>
</tr>
<tr>
<td>Life-Birth-Rate per ET</td>
<td>12,449</td>
<td>23.2</td>
</tr>
<tr>
<td>Number of Transfers in Ideal Patients (<=35 Years, >=4 2PN, SET)</td>
<td>6,409</td>
<td></td>
</tr>
<tr>
<td>Life-Birth-Rate per Transfer in Ideal Patients (<=35 Years, >=4 2PN, SET)</td>
<td>1,698</td>
<td>26.5</td>
</tr>
<tr>
<td>Number of Multiple Births After SET</td>
<td>39</td>
<td>2.3</td>
</tr>
<tr>
<td>Number of Transfers in Ideal Patients (<=35 Years, >=4 2PN, DET/TET)</td>
<td>23,922</td>
<td></td>
</tr>
<tr>
<td>Life-Birth-Rate per Transfer in Ideal Patients (<=35 Years, >=4 2PN, DET/TET)</td>
<td>7,093</td>
<td>29.7</td>
</tr>
<tr>
<td>Number of Multiple Births after DET/TET</td>
<td>1,422</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Loss of Pregnancy 2018
Prospective and Retrospective Data

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Pregnancies</td>
<td>17,226</td>
<td>100.0</td>
</tr>
<tr>
<td>Treatments with Known Cycle Outcome</td>
<td>16,341</td>
<td>94.9</td>
</tr>
<tr>
<td>Miscarriages</td>
<td>3,476</td>
<td>20.2</td>
</tr>
<tr>
<td>Among those:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced Abortions</td>
<td>171</td>
<td>4.9</td>
</tr>
<tr>
<td>Stilborn Children</td>
<td>169</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Embryos per Transfer¹ and Children per Birth 1997 – 2018
IVF, ICSI – Prospective and Retrospective Data

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Cycles</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>Cryo Cycles</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>Fresh Cycles</td>
<td>1.88</td>
<td></td>
</tr>
<tr>
<td>Cryo Cycles</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>Fresh Cycles</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>Cryo Cycles</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>Fresh Cycles</td>
<td>1.66</td>
<td></td>
</tr>
<tr>
<td>Cryo Cycles</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>Fresh Cycles</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>Cryo Cycles</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>Fresh Cycles</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>Cryo Cycles</td>
<td>1.14</td>
<td></td>
</tr>
</tbody>
</table>

¹) Mean

The number of children originating from multiple pregnancies has almost remained stable within the last decades. In 2018, we finally notice a trend to a reduction.

In summary: the number of embryos per transfer is an important factor worth looking at. It is important to allow children resulting from an ART-treatment to come into life as a singleton. Siblings are important and desirable – one at a time!
Culture According to the "German Middle Way" and Impact on Therapy Outcome – Fresh Cycles 2018

Prospective and Retrospective Data

Number of centers choosing \(\geq 3 \times 2PN \) for extended culture: \(n = 128 \)

| Oocyte Treatment (All) - Culture \(\geq 3 \times 2PN \) | 37,935 |
| Oocyte Treatment - Culture \(\geq 3 \times 2PN \) for Transfer on Day 4-6 | 22,871 |

Number of Transfer Cycles with SET Day 4-6

| CP/ET (doc.)* | 6,424 |
| Outcome unknown | 5 |

Miscarriage	365	15.9%
EP	46	2.0%
Not yet Recorded	163	7.1%
Birth (doc.)	1,725	75.0%
per Transfer		26.9%

<table>
<thead>
<tr>
<th>Births</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singletons</td>
<td>1,688</td>
<td>97.9</td>
</tr>
<tr>
<td>Twins</td>
<td>37</td>
<td>2.1</td>
</tr>
<tr>
<td>Triplets</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Quadruplets</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Number of Transfer Cycles with DET Day 4-6

| CP/ET (doc.)* | 15,771 |
| Outcome unknown | 63 |

Miscarriage	1,140	17.5%
EP	88	1.4%
Not yet Recorded	481	7.4%
Birth (doc.)	4,808	73.8%
per Transfer		30.5%

<table>
<thead>
<tr>
<th>Births</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singletons</td>
<td>3,444</td>
<td>71.6</td>
</tr>
<tr>
<td>Twins</td>
<td>1,334</td>
<td>27.7</td>
</tr>
<tr>
<td>Triplets</td>
<td>30</td>
<td>0.6</td>
</tr>
<tr>
<td>Quadruplets</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*) please note: documented clinical pregnancies per transfer on day <4: 8,410 / 31,432 = 26.8%

Comparison SET and DET "German Middle Way" Fresh Cycles 2018

![Comparison SET and DET "German Middle Way" Fresh Cycles 2018](image_url)
Culture According to the "German Middle Way" and Impact on Therapy Outcome – Thawing Cycles PNs 2018

Prospective and Retrospective Data

Number of centers thawing >=3 x 2PN for extended culture: n=75

<table>
<thead>
<tr>
<th>Culture >=3 Vital 2PNs After Thawing (All Cycles)</th>
<th>7,898</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Transfers on Day 2-3</td>
<td>2,621</td>
</tr>
<tr>
<td>Number of Transfer Cycles with SET Day 4-6</td>
<td>1,981</td>
</tr>
<tr>
<td>Culture >=3 Vital 2PNs After Thawing</td>
<td>5,130</td>
</tr>
<tr>
<td></td>
<td>Outcome unknown</td>
</tr>
<tr>
<td>CP/ET (doc.)</td>
<td>666</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>184</td>
</tr>
<tr>
<td>EP</td>
<td>6</td>
</tr>
<tr>
<td>Not yet Recorded</td>
<td>16</td>
</tr>
<tr>
<td>Birth (doc.)</td>
<td>460</td>
</tr>
<tr>
<td>per Transfer</td>
<td></td>
</tr>
<tr>
<td>Births</td>
<td></td>
</tr>
<tr>
<td>Singletons</td>
<td>442</td>
</tr>
<tr>
<td>Twins</td>
<td>15</td>
</tr>
<tr>
<td>Triplets</td>
<td>3</td>
</tr>
<tr>
<td>Quadruplets</td>
<td>0</td>
</tr>
<tr>
<td>Birth (doc.)/Transfer</td>
<td>1,166</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>279</td>
</tr>
<tr>
<td>EP</td>
<td>9</td>
</tr>
<tr>
<td>Not yet Recorded</td>
<td>45</td>
</tr>
<tr>
<td>Birth (doc.)</td>
<td>833</td>
</tr>
<tr>
<td>per Transfer</td>
<td></td>
</tr>
<tr>
<td>Births</td>
<td></td>
</tr>
<tr>
<td>Singletons</td>
<td>629</td>
</tr>
<tr>
<td>Twins</td>
<td>198</td>
</tr>
<tr>
<td>Triplets</td>
<td>6</td>
</tr>
<tr>
<td>Quadruplets</td>
<td>0</td>
</tr>
</tbody>
</table>

Comparison SET and DET "German Middle Way" Thawing Cycles PNs
Culture According to the "German Middle Way" and Impact on Therapy Outcome – Thawing Cycles Embryos 2018

Prospective and Retrospective Data

Number of centers transferring previously cryopreserved embryos: n=144

<table>
<thead>
<tr>
<th>Transfer Single ET</th>
<th>Transfer Double ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP/ET (doc.) 1,800</td>
<td>CP/ET (doc.) 960</td>
</tr>
<tr>
<td>Outcome unknown 25</td>
<td>Outcome unknown 11</td>
</tr>
<tr>
<td>Miscarriage 416</td>
<td>Miscarriage 247</td>
</tr>
<tr>
<td>EP 34</td>
<td>EP 11</td>
</tr>
<tr>
<td>Not yet Recorded 107</td>
<td>Not yet Recorded 24</td>
</tr>
<tr>
<td>Birth (doc.) 1,243 per Transfer</td>
<td>Birth (doc.) 678 per Transfer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Births</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singletons</td>
<td>1,219</td>
<td>98.1</td>
</tr>
<tr>
<td>Twins</td>
<td>24</td>
<td>1.9</td>
</tr>
<tr>
<td>Triplets</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Quadruplets</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Comparison SET and DET "German Middle Way" Thawing Cycles Embryos

![Comparison SET and DET "German Middle Way" Thawing Cycles Embryos](image-url)
Pregnancies Cumulative 2016 – 2019
IVF, ICSI, Cryo Cycles – Prospective Data

<table>
<thead>
<tr>
<th>Treatment started in 2016</th>
<th>Retrievals</th>
<th>Fresh Cycles with ET</th>
<th>CP (Fresh Cycles) in %</th>
<th>CP (Fresh Cycles w. Transfer)</th>
<th>CP (Cryo Cycles w. Transfer)</th>
<th>CP/ET (Cryo Cycles) in %</th>
<th>Cumulative Pregnancy Rate in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Treatment</td>
<td>30,718</td>
<td>29,721</td>
<td>30.6</td>
<td>7,678</td>
<td>2,353</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>2nd Treatment</td>
<td>13,554</td>
<td>13,028</td>
<td>27.2</td>
<td>5,377</td>
<td>1,496</td>
<td>27.2</td>
<td>50.4</td>
</tr>
<tr>
<td>3rd Treatment</td>
<td>8,700</td>
<td>8,330</td>
<td>25.9</td>
<td>3,484</td>
<td>291</td>
<td>25.9</td>
<td>62.7</td>
</tr>
<tr>
<td>4th Treatment</td>
<td>4,921</td>
<td>4,982</td>
<td>22.2</td>
<td>6,539</td>
<td>1,696</td>
<td>22.2</td>
<td>70.1</td>
</tr>
<tr>
<td>>4 Treatment</td>
<td>8,194</td>
<td>8,189</td>
<td>22.2</td>
<td>6,539</td>
<td>1,696</td>
<td>22.2</td>
<td>81.9</td>
</tr>
</tbody>
</table>

| 1st Treatment Cycle | 33.3 % | 2nd Treatment Cycle | 63.0 % | 3rd Treatment Cycle | 46.2 % | 4th Treatment Cycle | 73.6 % | >4 Treatment Cycle | 80.8 % |

For one cycle, no plausible data could be correlated to the treatment cycle. This cycle did not result in a transfer.

For 244 cycles, no plausible data could be correlated to the treatment cycles. These cycles resulted in 178 additional transfers with 66 additional clinical pregnancies.

<table>
<thead>
<tr>
<th>Treatment started in 2017</th>
<th>Retrievals</th>
<th>Fresh Cycles with ET</th>
<th>CP (Fresh Cycles) in %</th>
<th>CP (Fresh Cycles w. Transfer)</th>
<th>CP (Cryo Cycles w. Transfer)</th>
<th>CP/ET (Cryo Cycles) in %</th>
<th>Cumulative Pregnancy Rate in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Treatment</td>
<td>24,812</td>
<td>21,422</td>
<td>35.0</td>
<td>6,273</td>
<td>1,925</td>
<td>35.0</td>
<td>30.6</td>
</tr>
<tr>
<td>2nd Treatment</td>
<td>11,784</td>
<td>9,182</td>
<td>33.2</td>
<td>6,273</td>
<td>1,925</td>
<td>30.6</td>
<td>44.0</td>
</tr>
<tr>
<td>3rd Treatment</td>
<td>8,191</td>
<td>6,344</td>
<td>33.1</td>
<td>4,691</td>
<td>1,325</td>
<td>28.2</td>
<td>64.4</td>
</tr>
<tr>
<td>4th Treatment</td>
<td>5,917</td>
<td>4,580</td>
<td>33.2</td>
<td>3,277</td>
<td>915</td>
<td>27.9</td>
<td>70.2</td>
</tr>
<tr>
<td>>4 Treatment</td>
<td>14,432</td>
<td>10,640</td>
<td>30.8</td>
<td>10,784</td>
<td>2,834</td>
<td>26.3</td>
<td>79.3</td>
</tr>
</tbody>
</table>

| 1st Treatment Cycle | 35.0 % | 2nd Treatment Cycle | 44.0 % | 3rd Treatment Cycle | 64.4 % | 4th Treatment Cycle | 70.2 % | >4 Treatment Cycle | 79.3 % |

For one cycle, no plausible data could be correlated to the treatment cycle. This cycle did not result in a transfer.

For 3 cycles, no plausible data could be correlated to the treatment cycles. These cycles resulted in 2 additional transfers with one additional clinical pregnancy.
Oocyte Maturity Depending on Stimulation Protocol 2019
Oocyte Maturity and Development Depending on Downregulation Protocol

ICSI – Prospective and Retrospective Data

<table>
<thead>
<tr>
<th></th>
<th>Cycles</th>
<th>Mean Age</th>
<th>Oocytes Retrieved</th>
<th>Ooc. per Retrieval</th>
<th>Mature Oocytes</th>
<th>Mature Oocytes per Retrieval</th>
<th>2PN</th>
<th>2PN/Oocyte Retrieval</th>
<th>Embryos for ET</th>
<th>Gestational Sacs</th>
<th>Implant. Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonist</td>
<td>11,261</td>
<td>35.7</td>
<td>97,950</td>
<td>8.7</td>
<td>80,802</td>
<td>7.2</td>
<td>49,924</td>
<td>4.4</td>
<td>15,472</td>
<td>3,386</td>
<td>21.9</td>
</tr>
<tr>
<td>Antagonist</td>
<td>46,907</td>
<td>35.6</td>
<td>424,450</td>
<td>9.0</td>
<td>354,981</td>
<td>7.6</td>
<td>220,731</td>
<td>4.7</td>
<td>58,933</td>
<td>13,400</td>
<td>22.7</td>
</tr>
</tbody>
</table>

Cycles and Implantation-Rates with Transfer of Day 5/6 Embryos after Cryopreservation either on Culture Day 1 or Day 5/6

Thawing – Prospective and Retrospective Data

<table>
<thead>
<tr>
<th></th>
<th>Freezing on Culture D1</th>
<th>Freezing on Culture D5/6</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thawing-Cycles resulting in ET</td>
<td>6,682</td>
<td>8,829</td>
<td></td>
</tr>
<tr>
<td>PN/Embryos Thawed</td>
<td>17,864</td>
<td>9,984</td>
<td></td>
</tr>
<tr>
<td>Entities/Thawing-Cycle</td>
<td>2.7</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Re-Cryo of Embryos</td>
<td>1,510</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Embryos Available for Transfer</td>
<td>9,989</td>
<td>9,124</td>
<td></td>
</tr>
<tr>
<td>Re-Cryo/Cycle</td>
<td>0.2</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Transfer</td>
<td>6,682</td>
<td>8,829</td>
<td></td>
</tr>
<tr>
<td>Gestational Sacs (Intrauterine)</td>
<td>2,627</td>
<td>3,139</td>
<td></td>
</tr>
<tr>
<td>Embryos/ET</td>
<td>1.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Implantation Rate (%)</td>
<td>26.3</td>
<td>34.4</td>
<td></td>
</tr>
</tbody>
</table>
Implantation Rates of D3- and D5-Embryos and Number of Embryos per Transfer

IVF, ICSI – Prospective and Retrospective Data

<table>
<thead>
<tr>
<th></th>
<th>D3 Implantation Rate %</th>
<th>D5 Implantation Rate %</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVF Implantation Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>20.4</td>
<td>35.5</td>
</tr>
<tr>
<td>DET</td>
<td>21.0</td>
<td>28.0</td>
</tr>
<tr>
<td>ICSI Implantation Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>17.4</td>
<td>34.2</td>
</tr>
<tr>
<td>DET</td>
<td>19.6</td>
<td>25.0</td>
</tr>
</tbody>
</table>

Evolution of Retrieved Oocytes (IVF or ICSI)

IVF, ICSI – Prospective and Retrospective Data

<table>
<thead>
<tr>
<th></th>
<th>IVF</th>
<th>%</th>
<th>ICSI</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oocytes Retrieved</td>
<td>168,561</td>
<td>100.0</td>
<td>441,990</td>
<td>100.0</td>
</tr>
<tr>
<td>Oocytes Treated</td>
<td>163,875</td>
<td>97.2</td>
<td>345,213</td>
<td>78.1</td>
</tr>
<tr>
<td>Fertilized Oocytes (2PN)</td>
<td>90,962</td>
<td>54.0</td>
<td>224,619</td>
<td>65.1</td>
</tr>
<tr>
<td>2PN Cryopreserved</td>
<td>24,896</td>
<td>27.4</td>
<td>63,958</td>
<td>28.5</td>
</tr>
<tr>
<td>ET (Fresh)</td>
<td>14,380</td>
<td>15.8</td>
<td>38,632</td>
<td>17.2</td>
</tr>
<tr>
<td>Embryos Cryopreserved</td>
<td>6,072</td>
<td>6.7</td>
<td>14,094</td>
<td>6.3</td>
</tr>
</tbody>
</table>

0 100,000 200,000 300,000 400,000

- IVF
- ICSI

Not Utilizable
Embryos in Cryo
2 PN in Cryo
ET (Fresh)
Clinical Pregnancies (CP)/Fresh Transfer as a Function of Embryo Quality 2019

IVF, ICSI, IVF/ICSI – Prospective Data

<table>
<thead>
<tr>
<th>Quality</th>
<th><29 Years</th>
<th>30 – 34 Years</th>
<th>35 – 39 Years</th>
<th>>= 40 Years</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ideal</td>
<td>Not Ideal</td>
<td>Ideal</td>
<td>Not Ideal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ET</td>
<td>CP/ET %</td>
<td>ET</td>
<td>CP/ET %</td>
<td>ET</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>256</td>
<td>14.5</td>
<td>653</td>
<td>15.0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>330</td>
<td>22.1</td>
<td>788</td>
<td>25.4</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>5</td>
<td>20.0</td>
<td>12</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1,593</td>
<td>35.7</td>
<td>4,554</td>
<td>34.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>432</td>
<td>32.6</td>
<td>1,164</td>
<td>34.5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>25.0</td>
<td>25</td>
<td>32.0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3,109</td>
<td>44.9</td>
<td>7,971</td>
<td>44.8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>11</td>
<td>27.3</td>
<td>26</td>
<td>23.1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>32</td>
<td>25.0</td>
<td>150</td>
<td>36.7</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5,776</td>
<td>38.6</td>
<td>15,343</td>
<td>38.4</td>
</tr>
</tbody>
</table>

Clinical Pregnancies (CP)/Frozen Transfer as a Function of Embryo Quality 2019

Cryo Transfer – Prospective Data

<table>
<thead>
<tr>
<th>Quality</th>
<th>IVF</th>
<th>ICSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ET</td>
<td>ET</td>
</tr>
<tr>
<td></td>
<td>CP/ET %</td>
<td>CP/ET %</td>
</tr>
<tr>
<td>0</td>
<td>382</td>
<td>1,133</td>
</tr>
<tr>
<td>0</td>
<td>443</td>
<td>1,205</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>64</td>
</tr>
<tr>
<td>1</td>
<td>1,630</td>
<td>4,316</td>
</tr>
<tr>
<td>1</td>
<td>666</td>
<td>1,914</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>2,563</td>
<td>6,770</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>89</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>5,837</td>
<td>15,940</td>
</tr>
</tbody>
</table>

*In 5,645 cases, resulting in an additional 1,337 pregnancies, no information has been available how many embryos had been transferred.
Children as a Function of Week of Gestation (WoG) and Birth Weight (BW) 2018

Prospective and Retrospective Data

IVF, ICSI, IVF/ICSI

<table>
<thead>
<tr>
<th>WoG</th>
<th>20 - 27</th>
<th>28 - 32</th>
<th>33 - 36</th>
<th>37 - 41</th>
<th>>= 42</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singletons (n and %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>1.4</td>
<td>233</td>
<td>2.3</td>
<td>1,625</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,054</td>
<td>79.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>10,143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Birth Weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,221</td>
<td></td>
</tr>
<tr>
<td></td>
<td>841</td>
<td>1,828</td>
<td>2,810</td>
<td>3,385</td>
<td>3,446</td>
<td></td>
</tr>
<tr>
<td>Twins (n and %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>268</td>
<td>5.5</td>
<td>846</td>
<td>17.5</td>
<td>2,946</td>
<td>60.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>768</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>4,838</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Birth Weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,303</td>
<td></td>
</tr>
<tr>
<td></td>
<td>842</td>
<td>1,723</td>
<td>2,486</td>
<td>2,738</td>
<td>2,493</td>
<td></td>
</tr>
<tr>
<td>Triplets (n and %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>14.3</td>
<td>102</td>
<td>60.7</td>
<td>42</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>168</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Birth Weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,607</td>
<td></td>
</tr>
<tr>
<td></td>
<td>887</td>
<td>1,625</td>
<td>1,976</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Percentage of preterm deliveries in singleton pregnancies is 19.7%.
Percentage of preterm deliveries in twin pregnancies is 83.9%.

Cryo Transfer

<table>
<thead>
<tr>
<th>WoG</th>
<th>20 - 27</th>
<th>28 - 32</th>
<th>33 - 36</th>
<th>37 - 41</th>
<th>>= 42</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singletons (n and %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>1.2</td>
<td>99</td>
<td>2.1</td>
<td>737</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,864</td>
<td>80.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>4,780</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Birth Weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,423</td>
<td></td>
</tr>
<tr>
<td></td>
<td>941</td>
<td>2,005</td>
<td>3,124</td>
<td>3,551</td>
<td>3,594</td>
<td></td>
</tr>
<tr>
<td>Twins (n and %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>3.9</td>
<td>200</td>
<td>14.3</td>
<td>926</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>218</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>1,402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Birth Weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>836</td>
<td>1,794</td>
<td>2,578</td>
<td>2,838</td>
<td>2,668</td>
<td></td>
</tr>
<tr>
<td>Triplets (n and %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>38.9</td>
<td>27</td>
<td>50.0</td>
<td>6</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Birth Weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,433</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,008</td>
<td>1,600</td>
<td>2,165</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Percentage of preterm deliveries in singleton pregnancies is 18.7%.
Percentage of preterm deliveries in twin pregnancies is 84.2%.
Children Born 1997 – 2018
Prospective and Retrospective Data

Total (IVF, ICSI, IVF/ICSI, Cryo Transfer)

<table>
<thead>
<tr>
<th></th>
<th>Singletons</th>
<th>Twins</th>
<th>Triplets</th>
<th>Quadruplets</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>1997</td>
<td>4,175</td>
<td>58.7</td>
<td>1,902</td>
<td>32.8</td>
<td>492</td>
</tr>
<tr>
<td>1998</td>
<td>5,357</td>
<td>58.2</td>
<td>3,152</td>
<td>34.2</td>
<td>702</td>
</tr>
<tr>
<td>1999</td>
<td>6,116</td>
<td>60.5</td>
<td>3,396</td>
<td>33.6</td>
<td>600</td>
</tr>
<tr>
<td>2000</td>
<td>6,143</td>
<td>60.5</td>
<td>3,504</td>
<td>34.5</td>
<td>507</td>
</tr>
<tr>
<td>2001</td>
<td>7,726</td>
<td>62.2</td>
<td>4,252</td>
<td>34.3</td>
<td>435</td>
</tr>
<tr>
<td>2002</td>
<td>8,930</td>
<td>63.8</td>
<td>4,662</td>
<td>33.3</td>
<td>387</td>
</tr>
<tr>
<td>2003</td>
<td>11,922</td>
<td>63.1</td>
<td>6,334</td>
<td>33.6</td>
<td>597</td>
</tr>
<tr>
<td>2004</td>
<td>6,891</td>
<td>65.6</td>
<td>3,336</td>
<td>31.8</td>
<td>273</td>
</tr>
<tr>
<td>2005</td>
<td>7,038</td>
<td>65.8</td>
<td>3,440</td>
<td>32.1</td>
<td>213</td>
</tr>
<tr>
<td>2006</td>
<td>7,419</td>
<td>66.9</td>
<td>3,450</td>
<td>31.1</td>
<td>222</td>
</tr>
<tr>
<td>2007</td>
<td>8,407</td>
<td>66.4</td>
<td>4,076</td>
<td>32.2</td>
<td>183</td>
</tr>
<tr>
<td>2008</td>
<td>8,444</td>
<td>65.7</td>
<td>4,142</td>
<td>32.3</td>
<td>240</td>
</tr>
<tr>
<td>2009</td>
<td>9,016</td>
<td>67.3</td>
<td>4,152</td>
<td>31.0</td>
<td>216</td>
</tr>
<tr>
<td>2010</td>
<td>8,619</td>
<td>66.2</td>
<td>4,156</td>
<td>31.9</td>
<td>249</td>
</tr>
<tr>
<td>2011</td>
<td>9,382</td>
<td>63.3</td>
<td>5,131</td>
<td>34.7</td>
<td>300</td>
</tr>
<tr>
<td>2012</td>
<td>10,188</td>
<td>66.4</td>
<td>4,906</td>
<td>32.0</td>
<td>249</td>
</tr>
<tr>
<td>2013</td>
<td>11,713</td>
<td>64.9</td>
<td>6,002</td>
<td>33.3</td>
<td>327</td>
</tr>
<tr>
<td>2014</td>
<td>13,092</td>
<td>65.5</td>
<td>6,566</td>
<td>32.9</td>
<td>309</td>
</tr>
<tr>
<td>2015</td>
<td>13,702</td>
<td>65.4</td>
<td>6,942</td>
<td>33.2</td>
<td>297</td>
</tr>
<tr>
<td>2016</td>
<td>13,692</td>
<td>66.0</td>
<td>6,800</td>
<td>32.8</td>
<td>258</td>
</tr>
<tr>
<td>2017</td>
<td>14,722</td>
<td>66.1</td>
<td>7,206</td>
<td>32.3</td>
<td>342</td>
</tr>
<tr>
<td>2018</td>
<td>14,923</td>
<td>69.8</td>
<td>6,240</td>
<td>29.2</td>
<td>222</td>
</tr>
<tr>
<td>Total</td>
<td>207,623</td>
<td>65.1</td>
<td>103,748</td>
<td>32.5</td>
<td>7,620</td>
</tr>
</tbody>
</table>
Distribution of Indications 2019

IVF and ICSI – Prospective Data

<table>
<thead>
<tr>
<th>Distribution of Indications 2019</th>
<th>IVF and ICSI – Prospective Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>Transfers</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>No Information</td>
<td>100</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>4,780</td>
</tr>
<tr>
<td>Male</td>
<td>25,692</td>
</tr>
<tr>
<td>Female</td>
<td>13,494</td>
</tr>
<tr>
<td>Male and Female</td>
<td>15,338</td>
</tr>
<tr>
<td>Missing Male Partner</td>
<td>261</td>
</tr>
<tr>
<td>Homosexuality</td>
<td>345</td>
</tr>
<tr>
<td>Total</td>
<td>60,010</td>
</tr>
</tbody>
</table>

**) The indication “pathological function test” is included here

Treatments	Transfers	Clin. Preg.	Shares of Indications (Cycles) 2019			
n	n	%	n	%	n	%
No Information	100	67	67.0	21	31.3	
Idiopathic	4,780	3,590	75.1	1,188	33.1	
Male	25,692	22,923	89.2	7,490	32.7	
Female	13,494	10,441	77.4	3,262	31.2	
Male and Female	15,338	11,769	76.7	3,335	30.0	
Missing Male Partner	261	212	81.2	61	28.8	
Homosexuality	345	287	83.2	101	35.2	
Total	60,010	49,289	82.1	15,658	31.8	

<table>
<thead>
<tr>
<th>Shares of Indications (Cycles) 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male and Female</td>
</tr>
<tr>
<td>All Others</td>
</tr>
<tr>
<td>Idiopathic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Male Factor</th>
<th>Normal</th>
<th>Red. Semen Quality</th>
<th>Unknown</th>
<th>Other**</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female Factor</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Normal</td>
<td>1,728</td>
<td>10.5</td>
<td>615</td>
<td>3.7</td>
<td>92</td>
</tr>
<tr>
<td>Tubal Pathology</td>
<td>2,076</td>
<td>12.7</td>
<td>517</td>
<td>3.2</td>
<td>70</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>1,123</td>
<td>6.8</td>
<td>283</td>
<td>1.7</td>
<td>69</td>
</tr>
<tr>
<td>Hyperandrog./PCO</td>
<td>421</td>
<td>2.6</td>
<td>124</td>
<td>0.8</td>
<td>30</td>
</tr>
<tr>
<td>Ovulatory Dysf.</td>
<td>486</td>
<td>3.0</td>
<td>252</td>
<td>1.5</td>
<td>65</td>
</tr>
<tr>
<td>Psychogen. Factors</td>
<td>10</td>
<td>0.1</td>
<td>4</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>Age</td>
<td>338</td>
<td>2.1</td>
<td>132</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>Other*</td>
<td>1,107</td>
<td>6.7</td>
<td>959</td>
<td>5.8</td>
<td>0</td>
</tr>
<tr>
<td>No Information</td>
<td>4</td>
<td>0.0</td>
<td>7</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>7,293</td>
<td>44.4</td>
<td>2,893</td>
<td>17.6</td>
<td>346</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shares of Indications (Cycles) 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male and Female</td>
</tr>
<tr>
<td>All Others</td>
</tr>
<tr>
<td>Idiopathic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Male Factor</th>
<th>Normal</th>
<th>Red. Semen Quality</th>
<th>Azoosperma</th>
<th>Unknown</th>
<th>Other**</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female Factor</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Normal</td>
<td>951</td>
<td>2.2</td>
<td>9,635</td>
<td>22.1</td>
<td>1,131</td>
<td>2.6</td>
</tr>
<tr>
<td>Tubal Pathology</td>
<td>543</td>
<td>1.2</td>
<td>1,865</td>
<td>4.3</td>
<td>62</td>
<td>0.1</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>419</td>
<td>1.0</td>
<td>1,767</td>
<td>4.1</td>
<td>76</td>
<td>0.2</td>
</tr>
<tr>
<td>Hyperandrog./PCO</td>
<td>139</td>
<td>0.3</td>
<td>1,051</td>
<td>2.4</td>
<td>60</td>
<td>0.1</td>
</tr>
<tr>
<td>Ovulatory Dysf.</td>
<td>237</td>
<td>0.5</td>
<td>1,721</td>
<td>3.9</td>
<td>131</td>
<td>0.3</td>
</tr>
<tr>
<td>Psychogen. Factors</td>
<td>3</td>
<td>0.0</td>
<td>27</td>
<td>0.1</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>Age</td>
<td>237</td>
<td>0.5</td>
<td>1,080</td>
<td>2.5</td>
<td>134</td>
<td>0.3</td>
</tr>
<tr>
<td>Other*</td>
<td>823</td>
<td>1.9</td>
<td>6,023</td>
<td>13.8</td>
<td>481</td>
<td>1.1</td>
</tr>
<tr>
<td>No Information</td>
<td>71</td>
<td>0.2</td>
<td>71</td>
<td>0.2</td>
<td>29</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>3,423</td>
<td>7.9</td>
<td>23,240</td>
<td>53.3</td>
<td>2,106</td>
<td>4.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shares of Indications (Cycles) 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male and Female</td>
</tr>
<tr>
<td>All Others</td>
</tr>
<tr>
<td>Idiopathic</td>
</tr>
</tbody>
</table>

*) The indications “sperm antibodies” and “cervical factor” are included here

**) The indication “pathological function test” is included here
Mean Age for Women and Men 1997 – 2019

IVF, ICSI, IVF/ICSI – Prospective and Retrospective Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Man</th>
<th>Woman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>38.8</td>
<td>35.6</td>
</tr>
<tr>
<td>1998</td>
<td>38.4</td>
<td>35.2</td>
</tr>
<tr>
<td>1999</td>
<td>38.0</td>
<td>34.8</td>
</tr>
<tr>
<td>2000</td>
<td>37.6</td>
<td>34.4</td>
</tr>
<tr>
<td>2001</td>
<td>37.2</td>
<td>34.0</td>
</tr>
<tr>
<td>2002</td>
<td>36.8</td>
<td>33.6</td>
</tr>
<tr>
<td>2003</td>
<td>36.4</td>
<td>33.2</td>
</tr>
<tr>
<td>2004</td>
<td>36.0</td>
<td>32.8</td>
</tr>
<tr>
<td>2005</td>
<td>35.6</td>
<td>32.4</td>
</tr>
<tr>
<td>2006</td>
<td>35.2</td>
<td>32.0</td>
</tr>
<tr>
<td>2007</td>
<td>34.8</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>38.9</td>
<td>35.5</td>
</tr>
</tbody>
</table>

Pregnancy-Rate per ET Subject to Preexisting Medical- and Lifestyle-Conditions

Prospective and Retrospective Data

<table>
<thead>
<tr>
<th>Hypertension</th>
<th>Nicotine Abuse</th>
<th>BMI <=25</th>
<th>BMI >25 + <30</th>
<th>BMI >=30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Cycles with ET</td>
<td>459</td>
<td>4,748</td>
<td>54,973</td>
<td>10,592</td>
</tr>
<tr>
<td>CP (doc.)</td>
<td>131</td>
<td>1,491</td>
<td>16,970</td>
<td>3,371</td>
</tr>
<tr>
<td>CP (doc.) / ET</td>
<td>28.5</td>
<td>31.4</td>
<td>30.9</td>
<td>31.8</td>
</tr>
</tbody>
</table>

For the first time ever the data evaluation committee has attempted to evaluate anamnestic data and investigate possible relations of pre-existing medical conditions and lifestyle conditions with pregnancy rates per ET.

Due to the nature of the registers data collection, these results must be interpreted with caution.

In only 0.6% of treatment cycles resulting in an ET, hypertension was reported as a preexisting medical condition.

When BMI was automatically calculated from height and weight, nearly 10,000 cycles were performed with a BMI >30. In only 4,700 cycles however, “Adipositas per magne, BMI >30” was actively selected from the drop-down menu. In nearly 7,000 cycles, no data were reported regarding height and weight.
Clinical Pregnancy Rate as a Function of Stimulation 2019

Prospective Data

<table>
<thead>
<tr>
<th>Short GnRHa</th>
<th>uFSH</th>
<th>recFSH</th>
<th>hMG</th>
<th>recFSH a. recLH</th>
<th>recFSH a. hMG</th>
<th>Long-Acting recFSH</th>
<th>hrFSH</th>
<th>Other*</th>
<th>No Inform.</th>
<th>Total</th>
<th>Share (%) from total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulations (n)</td>
<td>42</td>
<td>2,747</td>
<td>245</td>
<td>2,877</td>
<td>874</td>
<td>218</td>
<td>100</td>
<td>315</td>
<td>176</td>
<td>7,594</td>
<td>12.9</td>
</tr>
<tr>
<td>Transfers (n)</td>
<td>25</td>
<td>2,157</td>
<td>172</td>
<td>2,231</td>
<td>697</td>
<td>167</td>
<td>77</td>
<td>199</td>
<td>91</td>
<td>5,816</td>
<td>13.1</td>
</tr>
<tr>
<td>Transfer (%)</td>
<td>59.5</td>
<td>78.5</td>
<td>70.2</td>
<td>77.5</td>
<td>79.7</td>
<td>76.6</td>
<td>77.0</td>
<td>63.2</td>
<td>51.7</td>
<td>76.6</td>
<td></td>
</tr>
<tr>
<td>CP (n)</td>
<td>9</td>
<td>720</td>
<td>42</td>
<td>740</td>
<td>237</td>
<td>47</td>
<td>33</td>
<td>39</td>
<td>20</td>
<td>1,887</td>
<td>13.2</td>
</tr>
<tr>
<td>CP/ET (%)</td>
<td>36.0</td>
<td>33.4</td>
<td>24.4</td>
<td>33.2</td>
<td>34.0</td>
<td>28.1</td>
<td>42.9</td>
<td>19.6</td>
<td>22.0</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>CP/Stim. (%)</td>
<td>21.4</td>
<td>26.2</td>
<td>17.1</td>
<td>25.7</td>
<td>27.1</td>
<td>21.6</td>
<td>33.0</td>
<td>12.4</td>
<td>11.4</td>
<td>24.8</td>
<td></td>
</tr>
</tbody>
</table>

Mean age of patients with regard to this protocol: 35.4 Jahre

<table>
<thead>
<tr>
<th>Long GnRHa</th>
<th>uFSH</th>
<th>recFSH</th>
<th>hMG</th>
<th>recFSH a. recLH</th>
<th>recFSH a. hMG</th>
<th>Long-Acting recFSH</th>
<th>hrFSH</th>
<th>Other*</th>
<th>No Inform.</th>
<th>Total</th>
<th>Share (%) from total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulations (n)</td>
<td>96</td>
<td>3,009</td>
<td>457</td>
<td>2,460</td>
<td>1,008</td>
<td>62</td>
<td>39</td>
<td>28</td>
<td>1,372</td>
<td>8,531</td>
<td>14.5</td>
</tr>
<tr>
<td>Transfers (n)</td>
<td>56</td>
<td>2,446</td>
<td>371</td>
<td>1,952</td>
<td>829</td>
<td>50</td>
<td>30</td>
<td>12</td>
<td>1,110</td>
<td>6,856</td>
<td>15.4</td>
</tr>
<tr>
<td>Transfer (%)</td>
<td>58.3</td>
<td>81.3</td>
<td>81.2</td>
<td>79.3</td>
<td>82.2</td>
<td>80.6</td>
<td>76.9</td>
<td>42.9</td>
<td>80.9</td>
<td>80.4</td>
<td></td>
</tr>
<tr>
<td>CP (n)</td>
<td>13</td>
<td>865</td>
<td>95</td>
<td>631</td>
<td>291</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>403</td>
<td>2,312</td>
<td>16.1</td>
</tr>
<tr>
<td>CP/ET (%)</td>
<td>23.2</td>
<td>35.4</td>
<td>25.6</td>
<td>32.3</td>
<td>35.1</td>
<td>14.0</td>
<td>23.3</td>
<td>0.0</td>
<td>36.3</td>
<td>33.7</td>
<td></td>
</tr>
<tr>
<td>CP/Stim. (%)</td>
<td>13.5</td>
<td>28.7</td>
<td>20.8</td>
<td>25.7</td>
<td>28.9</td>
<td>11.3</td>
<td>17.9</td>
<td>0.0</td>
<td>29.4</td>
<td>27.1</td>
<td></td>
</tr>
</tbody>
</table>

Mean age of patients with regard to this protocol: 34.9 Jahre

<table>
<thead>
<tr>
<th>No GnRHa-Analoga</th>
<th>uFSH</th>
<th>recFSH</th>
<th>hMG</th>
<th>recFSH a. recLH</th>
<th>recFSH a. hMG</th>
<th>Long-Acting recFSH</th>
<th>hrFSH</th>
<th>Other*</th>
<th>No Inform.</th>
<th>Total</th>
<th>Share (%) from total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulations (n)</td>
<td>20</td>
<td>1,277</td>
<td>933</td>
<td>1,044</td>
<td>358</td>
<td>208</td>
<td>28</td>
<td>6</td>
<td>57</td>
<td>3,931</td>
<td>6.7</td>
</tr>
<tr>
<td>Transfers (n)</td>
<td>16</td>
<td>1,000</td>
<td>729</td>
<td>844</td>
<td>282</td>
<td>155</td>
<td>20</td>
<td>3</td>
<td>33</td>
<td>3,082</td>
<td>6.9</td>
</tr>
<tr>
<td>Transfer (%)</td>
<td>80.0</td>
<td>78.3</td>
<td>78.1</td>
<td>80.8</td>
<td>78.8</td>
<td>74.5</td>
<td>71.4</td>
<td>50.0</td>
<td>57.9</td>
<td>78.4</td>
<td></td>
</tr>
<tr>
<td>CP (n)</td>
<td>3</td>
<td>318</td>
<td>222</td>
<td>230</td>
<td>68</td>
<td>50</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>904</td>
<td>6.3</td>
</tr>
<tr>
<td>CP/ET (%)</td>
<td>18.8</td>
<td>31.8</td>
<td>30.5</td>
<td>27.3</td>
<td>24.1</td>
<td>32.3</td>
<td>35.0</td>
<td>0.0</td>
<td>18.2</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td>CP/Stim. (%)</td>
<td>15.0</td>
<td>24.9</td>
<td>23.8</td>
<td>22.0</td>
<td>19.0</td>
<td>24.0</td>
<td>25.0</td>
<td>0.0</td>
<td>10.5</td>
<td>23.0</td>
<td></td>
</tr>
</tbody>
</table>

Mean age of patients with regard to this protocol: 35.6 Jahre

<table>
<thead>
<tr>
<th>GnRHa-Antagonists</th>
<th>uFSH</th>
<th>recFSH</th>
<th>hMG</th>
<th>recFSH a. recLH</th>
<th>recFSH a. hMG</th>
<th>Long-Acting recFSH</th>
<th>hrFSH</th>
<th>Other*</th>
<th>No Inform.</th>
<th>Total</th>
<th>Share (%) from total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulations (n)</td>
<td>411</td>
<td>18,116</td>
<td>1,159</td>
<td>9,706</td>
<td>3,925</td>
<td>1,944</td>
<td>440</td>
<td>1,563</td>
<td>1,392</td>
<td>38,656</td>
<td>65.8</td>
</tr>
<tr>
<td>Transfers (n)</td>
<td>299</td>
<td>14,095</td>
<td>795</td>
<td>7,093</td>
<td>2,977</td>
<td>1,460</td>
<td>308</td>
<td>920</td>
<td>748</td>
<td>28,695</td>
<td>64.6</td>
</tr>
<tr>
<td>Transfer (%)</td>
<td>72.7</td>
<td>77.8</td>
<td>68.6</td>
<td>73.1</td>
<td>75.8</td>
<td>75.1</td>
<td>70.0</td>
<td>58.9</td>
<td>53.7</td>
<td>74.2</td>
<td></td>
</tr>
<tr>
<td>CP (n)</td>
<td>88</td>
<td>4,793</td>
<td>195</td>
<td>2,270</td>
<td>975</td>
<td>383</td>
<td>121</td>
<td>175</td>
<td>227</td>
<td>9,227</td>
<td>64.4</td>
</tr>
<tr>
<td>CP/ET (%)</td>
<td>29.4</td>
<td>34.0</td>
<td>24.5</td>
<td>32.0</td>
<td>32.8</td>
<td>26.2</td>
<td>39.3</td>
<td>19.0</td>
<td>30.3</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td>CP/Stim. (%)</td>
<td>21.4</td>
<td>26.5</td>
<td>16.8</td>
<td>23.4</td>
<td>24.8</td>
<td>19.7</td>
<td>27.5</td>
<td>11.2</td>
<td>16.3</td>
<td>23.9</td>
<td></td>
</tr>
</tbody>
</table>

Mean age of patients with regard to this protocol: 35.3 Jahre

Mean age of patients with regard to all protocols:

| | 37.9 | 33.9 | 37.5 | 35.6 | 36.3 | 36.7 | 34.6 | 38.7 | 35.9 | 35.2 |

In 9,451 cycles, either the protocol or the type of gonadotrophin were not clearly reported. These cycles contain a high proportion of hMG, whereby the number of hMG-stimulations is falsely reported too low. This bug is being analyzed, as well as the conspicuously high number of cycles with GnRH-short-protocol.

*) e.g. u-FSH and hMG, Clomifen/rec-FSH, Clomifen/hMG etc.
Ovarian Hyperstimulation Syndrome (OHSS) as a Function of Stimulation Protocol and Age Cohort 2019

IVF, ICSI, IVF/ICSI – Prospective Data

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Cycles</th>
<th>%</th>
<th>Oocytes Retrieved</th>
<th>OHSS III (WHO)</th>
<th>OHSS III/Cycles %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short GnRHa</td>
<td>7,594</td>
<td>12.9</td>
<td>8.2</td>
<td>26</td>
<td>0.3</td>
</tr>
<tr>
<td>< = 29 Years</td>
<td>867</td>
<td></td>
<td>11.1</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>30 – 34 Years</td>
<td>2,365</td>
<td></td>
<td>9.4</td>
<td>9</td>
<td>0.4</td>
</tr>
<tr>
<td>35 – 39 Years</td>
<td>3,278</td>
<td></td>
<td>7.3</td>
<td>11</td>
<td>0.3</td>
</tr>
<tr>
<td>> = 40 Years</td>
<td>1,084</td>
<td></td>
<td>6.4</td>
<td>4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Long GnRHa	8,531	14.5	9.3	29	0.3
< = 29 Years	1,084		11.4	3	0.3
30 – 34 Years	2,811		10.6	11	0.4
35 – 39 Years	3,600		8.4	12	0.3
> = 40 Years	1,036		6.5	3	0.3

No GnRHa-Analoga	3,931	6.7	9.3	13	0.3
< = 29 Years	405		11.7	1	0.2
30 – 34 Years	1,144		10.3	4	0.3
35 – 39 Years	1,697		8.6	6	0.4
> = 40 Years	685		6.3	2	0.3

GnRHa-Antagonisten	38,656	65.8	9.2	133	0.3
< = 29 Years	4,762		11.9	11	0.2
30 – 34 Years	12,481		10.7	48	0.4
35 – 39 Years	16,265		8.3	55	0.3
> = 40 Years	5,148		5.7	19	0.4

| Total* | 58,712 | 100.0| 9.1 | 201 | 0.3 |

*) in 9,451 cycles, the protocol could not be reliably determined

Complications as a Function of Ovum Pick-up (OPU) 2019

Prospective Data

<table>
<thead>
<tr>
<th>Total OPU's</th>
<th>62,192</th>
<th>100.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Information</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>No Complications</td>
<td>61,671</td>
<td>99.2%</td>
</tr>
<tr>
<td>Complications</td>
<td>521</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Complications

<table>
<thead>
<tr>
<th>Complications</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal Bleeding</td>
<td>328</td>
<td>63.0</td>
</tr>
<tr>
<td>Intrabdom. Bleeding</td>
<td>75</td>
<td>14.4</td>
</tr>
<tr>
<td>Intestinal Tract Injury</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Peritonitis</td>
<td>24</td>
<td>4.6</td>
</tr>
<tr>
<td>Hospitalisation</td>
<td>7</td>
<td>1.3</td>
</tr>
<tr>
<td>Surgery</td>
<td>18</td>
<td>3.5</td>
</tr>
<tr>
<td>Other</td>
<td>68</td>
<td>13.1</td>
</tr>
</tbody>
</table>

Total 521 100.0%
For the second year in a row, the 2006 established network FertiPROTEKT e.V. – a consortium of centers from Germany, Austria and Switzerland, that are engaged in fertility preservation in female patients before gonadotoxic therapies – is able to present its yearly registry data within the D-I-R yearbook.

This year, however, the focus is set on the last four years, showing the data from 2016 up to 2019. Since information on ovarian tissue transplantation was scarce in the year 2019, we omit to publish about them this year, since they would not be representative.

Overall, 2019 we registered less counselling visits than in 2018. However, as more interventions are registered, we assume that the number of counselling visits was still high, just not documented.

The distribution of the individual treatments remained the same within the last years.

Last year the number of children <15 years of age counselled increased dramatically. This is not due to the activity of a single center, but rather due to counselling in several university clinics. Furthermore, the reason for the reduced number of patients counselled between 36-40 years remains speculative.
Diagnoses at Consultation

While in former days mainly patients with breast cancer and lymphoma were seen, the incidence of patients with other cancers increased in 2019. We hope that this trend will be kept up, when fertility preservation will be covered by the insurance companies in Germany and Switzerland in the near future.

The ratio of malignant to benign diseases remains stable.

Frequent Diagnosis Groups in Register 2016 – 2019

Underlying Disease when Ovarian Stimulation is Performed

Logarithmic Scale

Underlying Disease when Ovarian Tissue Cryopreservation is Performed

Logarithmic Scale
This year an increased number of GnRHa prescriptions can be noted, most likely due to the more recent articles published in favor of their use.
The entry of the FertiPROTEKT-ID has picked up in 2019, even before it has become a mandatory field for the documentation of ovarian stimulation cycles, and is expected to increase further in the upcoming years. This allows us to measure the quality of the treatment on one hand and to link the underlying indication of the fertility preservation on the other hand.

It is currently assumed that still not all ovarian stimulations are documented within this registry, as the numbers documented differ between the two registries. Furthermore, only two cycles of cryo-embryo-transfers are noted, which is below our expectations.

A goal for the upcoming year will be the definition of indications for recording a cycle at the D-I-R registry as well as to simplify the submission and revision of data within the FertiPROTEKT registry. In addition, an automated creation of a patient document with a FertiPROTEKT-ID is planned, in order to facilitate the communication between the centers regarding one and the same patient.

Therefore, we already integrated the data from the former registries from the years before 2014 into the existing registry. All of them were updated with a FertiPROTEKT-ID, allowing to add this number in the D-I-R registry, when a cyro-embryo-transfer is performed nowadays.
Deutsches IVF-Register e.V. (D·I·R)®
List of D·I·R Members

Sorted by postal code in ascending order – as at September 2020

if calling from outside Germany, dial +49 and omit 0 in the area code.

Kinderwunschzentrum Dresden
Dr. med. univ. Birgit Leuchten
Dr. med. univ. Birgit Leuchten, Dr. med. Hans-Jürgen Hald, F. A. Sophia Müller, F. A. Nuita Simó, Dr. med. Stefanie Reißner, M. Sc. Lisa Baldauf, Dr. rer. nat. Bernd Junkersdorf
Prager Straße 8a
01069 Dresden
T: 0351 5014000, F: 0351 50140028
info@ivf-dresden.de
www.ivf-dresden.de

Gynäkologische Endokrinologie und Reproduktionsmedizin der Universität Frauenklinik Dresden
Universitäres Kinderwunschzentrum
Dr. med. Maren Goeckenjan-Festag, Dr. med. Berit Thieme, Ina Trinkaus
Fetscherstraße 74
01307 Dresden
T: 0351 458 3491, F: 0351 458 5351
info@ivf-dresden.de
T: 030 26302310 60, F: 030 26302310 19
info@fertilitaet.de
www.fertilitaet.de

Kinderwunschzentrum Leipzig-Chemnitz
Standort Leipzig
Dipl. med. Jens-Peter Reicher, Dr. med. Petra Jörgsches, Dörte Geistert, Laila Shugair, Dr. med. Beate Decker, Dipl.-Biol. Verona Blumenauer
Goldschmidtstraße 30
04103 Leipzig
T: 0341 141200, F: 0341 1412081
info@ivf-leipzig.de
www.ivf-leipzig.de

Kinderwunschzentrum Praxisklinik City Leipzig
Standort Leipzig
Dr. med. Astrid Gabert, Dr. med. Katharina Bauer, Dr. med. Isabel Schwandt, F. A. Jana Sonneck, Dr. med. Doreen Marx, Prof. Dr. med. Henry Alexander, Dr. rer. nat. Stefanie Breuer
Petersstraße 1
04109 Leipzig
T: 0341 2158550, F: 0341 21585517
info@ivf-leipzig.de
www.praxisklinik-city-leipzig.de

Universitätsklinikum Halle (Saale)
Martin-Luther-Universität Halle-Wittenberg, Zentrum für Reproduktionsmedizin und Andrologie
Univ.-Prof. Dr. med. Hermann M. Behre, O. A. Dr. med. Petra Kaltwasser, OA PD Dr. med. Gregor Seliger, Dr. rer. nat. Thomas Greither
Ernst-Grube-Straße 40
06120 Halle (Saale)
T: 0345 557 4782, F: 0345 557 4788
ZRA@uk-halle.de
www.kinderwunsch-halle.de

Zentrum für Reproduktionsmedizin Jena & Erfurt
Gemeinschaftspraxis Dres. Fritzsche
PD Dr. med. habil. Heidi Fritzsche, Dr. med. Andreas Fritzsche, Msc.
Markt 4
07743 Jena
T: 03641 474440, F: 03641 474442
information@kinderwunsch-thueringen.de
www.kinderwunsch-thueringen.de

Klinik und Poliklinik für Frauenheilkunde und Fortpflanzungsmedizin
Universitätsklinikum Jena
Uni-Kinderwunsch- und Hormonzentrum
Univ.-Prof. Dr. med. Ingo B. Runnebaum, Dr. rer. nat. Ines Hoppe, PD Dr. Alexander Freis, Dr. med. Gabriele Pretzsch, Abdulnaser Shtian, Dr. Amani Cornelius
Am Klinikum 1
07747 Jena
T: 03641 9329 116, F: 03641 9329 129
kinderwunsch@med.uni-jena.de
www.uniklinikum-jena.de/frauenheilkunde/
KinderwunschzentrumJenaHormonzentrum.html

Kinderwunschzentrum Leipzig-Chemnitz
Standort Chemnitz
Dipl. med. Jens-Peter Reicher, Dr. med. Petra Jörgsches, Dörte Geistert, Laila Shugair, Dr. med. Beate Decker
Jakobikirchplatz 4
09117 Chemnitz
T: 0371 5034980, F: 0371 50349881
info@ivf-chemnitz.de
www.ivf-chemnitz.de

Kinderwunschzentrum Praxisklinik City Chemnitz
Standort Chemnitz
Dr. med. Astrid Gabert, Dr. med. Katharina Bauer, Dr. med. Isabel Schwandt, F. A. Jana Sonneck, Dr. med. Doreen Marx, Dr. rer. nat. Stefanie Breuer
Flemmingstraße 2a
09116 Chemnitz
T: 0371 4331300, F: 0371 43313017
info@kinderwunschzentrum-chemnitz.de
www.kinderwunschzentrum-chemnitz.de

MVZ Kinderwunschteam Berlin GmbH
Dr. med. Gülten Halis, Dr. med. Kathrin Wohlfahrt, Dr. med. Sophie von Welser, Dr. med. Elisabeth Weise, Dipl.-Biolog. Elod Jager
Friedrichstraße 79
10117 Berlin
T: 030 2065805 0, F: 030 2065805 20
info@kinderwunschteam.berlin
www.kinderwunschteam.berlin

Praxis für Fertilität
Gynäkologische Endokrinologie und Reproduktionsmedizin
Dr. med. David J. Peet, Dr. med. Wilke Wilkening, Constanze Glaser, Dr. med. Annette Nickel, Dr. med. Rolf Metzer
Friedrichstraße 150
10117 Berlin
T: 030 26302310 60, F: 030 26302310 19
info@fertilitaet.de
www.fertilitaet.de

MVZ Vivaneo Praxisklinik Sydow Berlin GmbH
Dr. med. Peter Sydow, Dr. med. Carmen Sydow, Dr. med. Ulrike Bergmann-Hensel, Dr. med. Birgit Bestvater, Dr. med. Susann Kreuz, Dr. med. Dagmar Geiß
Kronenstraße 55-58
10117 Berlin
T: 030 2062672 0, F: 030 2062672 18
info@vivaneo-berlin.de
www.vivaneo-ivf.com/de/
kinderwunschzentrum-sydw-berlin/

Wunschkind Berlin
Dr. med. Björn Hornskamp, PD Dr. med. Bernd Krause, Dr. med. Petra Rudolph, Dr. med. Katja Schwenk, Dr. med. med. Sophia Herzfeld, Dipl.-Biol. Werner Hoppenstedt
Uhlandstraße 20-25
10623 Berlin
T: 030 880349056, F: 030 880349035
info@wunschkind-berlin.de
www.wunschkind-berlin.de

Ceres – Kinderwunschzentrum Dr. Hannen und Dr. Stoll
Dr. med. Reinhard Hannen, Dr. med. Christian Friedrich Stoll
Landgrafallee 14
10787 Berlin
T: 030 2639830, F: 030 26398399
info@kinderwunschzentrum.de
www.kinderwunschzentrum.de

Kinderwunschzentrum an der Gedächtniskirche
Dr. med. Matthias Bloechle, Dr. med. Silke Marr, Astrid Kim
Rankestraße 34
10789 Berlin
T: 030 2190920, F: 030 21909299
info@kinderwunsch-berlin.de
www.kinderwunsch-berlin.de

List of D-I-R Members

J Reproduktionsmed Endokrinol 2020; 17 (5) 231
List of D-I-R Members

Kinderwunschzentrum am Innsbrucker Platz
Berlin
Babette Remberg, Dr. med. Susanne Tewordt-Rehbein, Dr. med. Jutta Sidor, Dr. rer. nat. Thomas Jeziorowski
Hauptstraße 65
12159 Berlin
Tel: 030 85757930, F: 030 85757935
praxis@kinderwunschpraxis-berlin.de
www.kinderwunschpraxis-berlin.de

Kinderwunschzentrum Dres. Hoffmann
Praxis-Klinik Dres. Hoffmann
Dr. med. Swetlana Hoffmann, Dr. med. Ivan Hoffmann, Dr. Vladimir Fait, M. Sc.
Bölschestraße 62
12587 Berlin
Tel: 030 84599450
info@praxisklkinik-dres-hoffmann.de
www.praxisklkinik-dres-hoffmann.de

MVZ für Gynäkologie Helle-Mitte
Zentrum für Kinderwunschtherapie Berlin Helle-Mitte
Dr. med. Muna Zaghlool-Abu Dakah, Dr. med. Gothild Matheus
Stendaler Straße 24
12627 Berlin
Tel: 030 99277990, F: 030 99277922
info@berliner-kinderwunsch.de
www.berliner-kinderwunsch.de

MVZ Fertility Center Berlin GbR
Auf dem Gelände der DRK Kliniken Westend
Dr. med. Andreas Tandler-Schneider, Dr. med. Gabriele Stief, Dr. med. Anette Siemann, Prof. Dr. med. Heribert Kenentich, Isabelle von Pauen
Dr. med. Manja Krause, Dr. med. Anna Julka Weblus, Sabine Jansen, Dr. rer. nat. Claus Sibold, Dipl.-Biofarmak. Jacqueline Ulrich, Dr. rer. nat. Ulrike Montag, Dipl. Ing. Bio. Annett Ullm
Spandauer Damm 130
14050 Berlin
Tel: 030 233208110, F: 030 233208119
info@fertilitycenterberlin.de
www.fertilitycenterberlin.de

Kinderwunschärzte Berlin GbR
Zentrum für Kinderwunscheileitung und Fertilitätsprotection
Dr. med. Andreas Jantke, Dr. med. Anna Stegelmann, Frau Bettina Jantke, Dr. rer. nat. Yves Charron, Dipl.-Bio. Nicole Klauke
Clayallee 225a
14195 Berlin
Tel: 030 814576565, F: 030 814576566
info@kinderwunschkaerzte-berlin.de
www.kinderwunschkaerzte-berlin.de

Kinderwunschzentrum Potsdam
Dr. med. Kay-Thomas Moeller, Dr. med. Kathleen Linca, Dr. med. Anja Bretschneider-Schwarz, Dr. Manzoor Nowshari
Babelsberger Straße 8
14473 Potsdam
Tel: 0331 23189292, F: 0331 23189293
info@kinderwunsch-potsdam.de
www.kinderwunschzentrum-potsdam.de

Praxis für Fertilität
MVZ GmbH
PD Dr. med. Heiner Müller, Annette Busecke, Anja Bossow, Dr. med. Anne Koenen
Südring 81
18059 Rostock
Tel: 0381 44012030, F: 0381 44012031
info@ivf-rostock.de
www.ivf-rostock.de

Medizinisches Versorgungszentrum
Fertility Center Hamburg GmbH
Dr. med. (IL) Robert Fischer, Dr. med. Kay Christian Lobbécke, Dr. med. Heike Boppert, Thomas Meyer, Prof. Dr. med. Wolfgang Schulze
Speerstraße 4
20095 Hamburg
Tel: 040 30804400, F: 040 30804900
fch-service@amedes-group.com
www.fertility-center-hh.de

amedes experts
Facharzt-Zentrum für Kinderwunsch, Pränatal Medizin, Endokrinologie und Osteologie Hamburg
Prof. Dr. med. Frank Nawroth, Prof. Dr. med. Barbara Sonntag, Dr. med. Sara Compljo, Dr. med. Astrid Dangel, Prof. Dr. med. Christoph Dorn, PD Dr. med. Michael Graf, Dr. med. Cathrin Grave, Dr. med. Ute Hugo, Dr. med. Tatjana Lindig, Dr. med. Imke Mebes, Dr. med. Raquel Pozo-Ugarte, PD Dr. med. Sabine Segerer, Dr. rer. nat. Beatrice Maxrath
Mönckebergstraße 10 (Barkhoffallee)
20095 Hamburg
Tel: 0800 5891688, F: 040 380708310
kinderwunsch-hamburg@amedes-group.com
www.amedes-experts-hamburg.de

Kinderwunsch Valentinshof
Dr. med. Anja Dawson, Dr. med. Liza Koch-Pinter, PD Dr. med. Ulrich A. Krämer, PD Dr. med. Astrid Dangel, Prof. Dr. med. Christoph Dorn, PD Dr. med. Michael Graf, Dr. med. Cathrin Grave, Dr. med. Ute Hugo, Dr. med. Tatjana Lindig, Dr. med. Imke Mebes, Dr. med. Raquel Pozo-Ugarte, PD Dr. med. Sabine Segerer, Dr. rer. nat. Beatrice Maxrath
Mönckebergstraße 10 (Barkhoffallee)
20095 Hamburg
Tel: 0800 5891688, F: 040 380708310
kinderwunsch-hamburg@amedes-group.com
www.amedes-experts-hamburg.de

Kinderwunsch Hamburg Mitte
Prof. Dr. (Univ. Bs. As.) Miguel Hinrichsen, Dr. med. Anja Dawson, Dr. med. Nuray Aytekin
Caffamacherreihe 8
20355 Hamburg
Tel: 040 6963244 60, F: 040 6963244 79
empfang@kinderwunsch-vaentlinsch.de
www.kinderwunsch-valentinshof.de

Kinderwunsch Zentrum HAFENCITY Hamburg
Dr. med. Ekkert Göhmann, Dr. med. Thomas Krämer
Sumatrakonter, Übergesäß 1
20457 Hamburg
Tel: 040 30088 100, F: 040 30088 1010
kontakt@kinderwunsch-hafencity.de
www.kinderwunsch-hafencity.de

Kinderwunsch Praxisklinik Fleetinsel Hamburg
Dr. univ. Ist. Semsettin Hejaj, Dr. med. Peter List, Dr. rer. nat. Uwe Weidner
Admiralitätsstraße 4
20459 Hamburg
Tel: 040 38605550, F: 040 38605551
info@kinderwunschfleetinsel.de
www.kinderwunschfleetinsel.de

Praxis für Kinderwunsch & Hormone – Hamburger Straße
Dr. med. Urte Reinhardt, Dr. med. Tina Oster-holz-Zaleski, Jennifer Hajek MSc.
Klinikweg 23
22081 Hamburg
Tel: 040 6000 379 0, F: 040 6000 379 29
welcome@ivf-hh.de
www.ivf-hh.de

Universitäres Kinderwunsch-Zentrum Lübeck und Manhagen
Zentrum für Gynäkologische Endokrinologie und Reproduktionsmedizin am Universitätsklinikum Schleswig-Holstein, Universitäre Kinderwunschzentren GmbH
Prof. Dr. med. Georg Griesinger, M. Sc., PD Dr. med. Anka Schultze-Mosgau, Dr. med. Marion Depenbusch
Ratzeburger Allee 111-125
23562 Lübeck
Tel: 0451 505778 10, F: 0451 505778 299
Parkklinik Manhagen, Zufahrt: Hamburger Healthstraße 9
22972 Großhansdorf
Tel: 04102 777 686 0, F: 04102 777 686 309
kinderwunsch@uksh.de
www.uksh.de/Kinderwunsch_Luebeck/

Kinderwunsch Holstein
Dr. med. Peter Kunstmann, Dr. biol. hom. Claas Mehnert
Lübecker Straße 68
23611 Bad Schwartau
Tel: 0451 498955 22, F: 0451 498955 25
info@ivf-badschwartau.de
www.ivf-badschwartau.de

fertilitycenter Schleswig-Holstein
fertilitycenterkiel / fertilitycenterflensburg

Dr. med. Martin Volkers, Dr. med. Nevin Inan, Dr. med. Antonia Wenners
Prüner Gang 15
24937 Flensburg
Tel: 0431 97413 33, F: 0431 97413 89
info@ivf-flensburg.de
www.ivf-flensburg.de

fertilitycenterklinik / fertilitycenterflensburg

Dr. med. Martin Volkers, Dr. med. Nevin Inan
Prüner Gang 15
24937 Flensburg
Tel: 0461 30506 20, F: 0461 30506 22
info@fertilitycenter.de
www.fertilitycenter.de

232 J Reproduktionsmed Endokrinol 2020; 17 (5)
List of D·I·R Members

KinderWunschKempten (KWK)
Zentrum für Reproduktionsmedizin, Klinik für Frauenheilkunde und Geburts hilfe, Klinikum Kempten, Klinikverbund Kempten - Allgäu
Prof. Dr. med. Ricardo Felberbaum, Dr. med. Anke Brössner, Dr. med. Karin Grimm, M.Sc., Dr. med. Ezster Kugler, Klinik Embryologin Nadia Jaouad
Robert-Weixler-Straße 50
87439 Kempten
T: 0831 530 3380, F: 0831 530 3378
kinderwunsch@klinikum-kempten.de
www.kv-keoa.de/kinderwunschzentrum/

Praxisklinik Frauenstraße
MVZ für Kinderwunsch und Pränatalmedizin GmbH
Prof. Dr. med. Karl Sterzik, Dr. med. Erwin Strehler, Dr. med. Kerstin Knab
Frauenstraße 51
89073 Ulm
T: 0731 96651-0, F: 0731 96651-30
info@kinderwunsch-ulm.de
www.kinderwunsch-ulm.de

Universitätsfrauenklinik Ulm
Unifee – Kinderwunsch / Fertility and Endocrinology
Prof. Dr. med. Katharina Hancke
Prittwitzstraße 43
90725 Ulm
T: 0731 500 58663, F: 0731 500 58664
unifee.frauenklinik@uniklinik-ulm.de
www.unifee.de

Universitäts-Fortpflanzungszentrum Franken (UFF)
Prof. Dr. med. Matthias W. Beckmann, Prof. Dr. med. Susanne Cupisti, Prof. Dr. rer. nat. Ralf Dittrich
Universitätsstraße 21-23
91054 Erlangen
T: 09131 8535533, F: 09131 8533545
info@kinderwunschzentrum-erlangen.de
www.uk-erlangen.de

Praxis Dr. med. Jürgen Krieger
Kinderwunschzentrum Amberg
Dr. med. Jürgen Krieger
Emailfabrikstraße 15
92224 Amberg
T: 09621 769370, F: 09621 9601612
info@kinderwunschzentrum-erlangen.de
www.kinderwunschzentrum-erlangen.de

MVZ KITZ Regensburg GmbH
PD Dr. med. Andreas Schüring, Prof. Dr. med. Bernd Seifert, Dr. med. Janine Suhren
Hemauerstraße 1
93047 Regensburg
T: 0941 9925770, F: 0941 99257723
info@kitz-regensburg.de
www.kitz-regensburg.de

profertilita
Fachklinik für Fruchtbarkeitsmedizin
Prof. Dr. med. Monika Bals-Pratsch, M. Sc., Dr. med. Angelika Eder, M. Sc., Dr. med. Tanja Ignatov, Dr. med. Christine Reißmann
Hildegard-von-Bingen-Straße 1
93047 Regensburg
T: 0941 89849944, F: 0941 89849945
praxis@profertilita.de
www.profertilita.de

Kinderwunschzentrum Niederbayern
Dr. med. Hans-Joachim Kroiss, Dr. med. Samuel Dadze, Dr. med. Thomas Elfriede Bernhardt
Stadtfeldstraße 50
94469 Deggendorf
T: 0991 29799332, F: 0991 29799331
dr.kroiss@ivf-bayern.de
www.kinderwunsch-niederbayern.de

MVZ Fertility Center Bayreuth GmbH
Tanja Wissendheit, Rainer Mogalle
Friedrich-von-Schiller-Straße 35
95444 Bayreuth
T: 0921 53030210, F: 0921 53030211
info@fertility-center-bayreuth.de
www.fertility-center-bayreuth.de

MainKid
Kinderwunschzentrum am Theater
Prof. Dr. Ursula Zollner, Klaus-Peter Zollner, M.Sc.
Theaterstraße 20
97070 Würzburg
T: 0931 45276630, F: 0931 45276628
info@mainkid.de
www.mainkid-kinderwunsch.de

Universitätssäulenklinikum Würzburg
Frauenklinik und Poliklinik, Zentrum für gynäkologische Endokrinologie und Reproduktionsmedizin (ZERM)
Dr. med. Michael Schwab, Dr. med. Roman Pavlik, Dr. rer. nat. Claudia Staib
Josef-Schneider-Straße 4
97080 Würzburg
T: 0931 201 25619, F: 0931 201 25406
kinderwunsch@klinik.uni-wuerzburg.de
www.frauenklinik.ukw.de/kinderwunsch.html
Without generous support publishing this annual would not have been possible. Our gratitude goes to

FERRING Arzneimittel GmbH, Kiel
www.ferring.de
7,500 Euro – PREMIUM PARTNER

GEDEON RICHTER PHARMA GmbH, Köln
www.gedeonrichter.de
7,500 Euro – PREMIUM PARTNER

Merck Serono GmbH, Darmstadt
www.merckserono.de
7,500 Euro – PREMIUM PARTNER

Theramex Germany GmbH, Berlin
www.theramex.com
7,500 Euro – PREMIUM PARTNER

CooperSurgical | Fertility and Genomic Solutions, Frankfurt am Main
www.coopersurgical.com
4,500 Euro

MSD Sharp & Dohme GmbH, Haar bei München
www.msd.de
4,500 Euro
Mitteilungen aus der Redaktion

Besuchen Sie unsere Rubrik

☑ Medizintechnik-Produkte

Neues CRT-D Implantat Intica 7 HFT QP von Biotronik

Aspirator 3 Labotect GmbH

Artis pheno Siemens Healthcare Diagnostics GmbH

Philips Azurion: Innovative Bildgebungslösung

InControl 1050 Labotect GmbH

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

☑ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung